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PREFACE

Preface 
The subtitle, "A structural geology lab manual for the 21st Century", as well 

as the rationale for a new manual, needs a little explanation (and, perhaps, some 
justification). There are several decent structural geology lab manuals out there and 
the fact that a new one has not appeared in many years would suggest that the field 
is mature and not changing rapidly, so why write a new one? Because the field of  
structural geology, indeed all of  geology, has changed enormously in the last 
decade or two. Consider the following: 

• Large online digital databases for topography, satellite imagery, 
scanned geologic maps, GPS data, earthquake data, etc have be-
come readily available 

• Digital devices are seeing increasing use in the field. We collect 
data using tablets and, increasingly, smart phones will replace ana-
log compasses 

• Using programs, apps, and web apps to analyze data is now com-
mon place. Most structural geologists use such programs in prefer-
ence to paper, whether drawing sections or plotting stereonets 

The world has gone digital, but our teaching of  structural geology has lagged 
far behind: many of  the exercises that we ask students to do in structure lab have 
changed little over the last fifty years. We are not teaching our students how to take 
advantage of  this new world, nor how the tools that they will use in their profession 
(e.g., stereonet programs, etc.) actually work internally. Digital means that, sudden-
ly, lots of  numbers are available to us. To analyze those numbers, requires some 
math and computing. Most of  the math is just additions and multiplications done 
in a very systematic way as well as, of  course, trigonometry. Students have much of  
the needed math background already (vectors, calculus) so why don't we encourage 
them to use those skills in their chosen major? Additional concepts — for example 
matrices — can be learned in the context of  problems that are actually of  interest 
to us. 

Computing can take many forms but the lowest common denominator is the 
humble spreadsheet program, which is what Modern Structural Practice uses. Everyone 
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PREFACE

already knows the basics of  using a spreadsheet and it is almost certain that every-
one already has a spreadsheet on their computer. This enables us to implement al-
gorithms without the overhead of  learning a computer language. Students who al-
ready know how to program should be encouraged to use their skills rather than 
the spreadsheet. For the rest, once you see the power of  algorithms, you can decide 
what flavor of  computing to learn and use in your subsequent endeavors. 

A more mathematical approach benefits all of  us in another way: it helps lay 
the necessary groundwork for understanding difficult concepts from mechanics. 
This manual has several chapters devoted to stress and strain which, of  course, 
constitute only a very small part of  the field of  solid mechanics. However, the 
background gained will help the motivated student to understand the entirety of  
mechanics in subsequent studies. 

The other thing that is almost entirely lacking from current lab manuals is 
even a passing emphasis on uncertainty and error analysis. Modern Structural Practice 
does not delve into these topics in great detail but does, at least, mention them. 
Even something as seemingly well know as the elevation of  a point on the surface 
of  the earth can vary by 15 m or more depending on the dataset used. This is par-
ticularly important when a student first encounters a geologic map or makes a mea-
surement with a compass. If  you can make a lot of  measurements, which digital 
tools now enable us to do, then you can begin to evaluate uncertainty. 

Some might question whether this approach removes us from classical geolo-
gy but quite the opposite is true: if  you go digital, there is a huge amount of  quanti-
tative information that can be extracted from a geologic map or a digital data set. 
In the past, the manual methods of  extracting that information were so tedious that 
it was too painful to explore the map. Some of  the software tools that are used in 
Modern Structural Practice make it trivially easy to extract quantitative 3D information 
which can then be analyzed as the student and professor wish. 

This manual is a work in progress: The current version has been used by my 
own students to whom I am deeply grateful for their feedback and their willingness 
to try something different. I also appreciate the time that Néstor Cardozo, Haakon 
Fossen, David Pollard, and Ray Fletcher have taken to read over parts of  this mate-
rial, though they are neither responsible for any errors nor do they necessarily en-
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dorse the overall approach! I welcome comments and suggestions from faculty and 
students. I know that some of  the material is hard — nothing ventured nothing 
gained — so the type of  feedback that really helps me is to help identify sections 
that are unclear or missing entirely. Students, please note that, while I would like to 
help with the solution to the exercises at the end of  each chapter, I really don’t have 
time to do so. 

My current plan is that Modern Structural Practice remain a free resource, up-
dated periodically. It is more important to me that it is widely used (nothing like 
free to help make that happen) than that it is published. Besides, students already 
pay too much for textbooks. Think of  it as crowd-sourcing the revisions. The 
downside of  this “self-published” version is that the reader has to suffer with my 
minimal page layout skills and limited artistic ability with the figures. An advantage 
is that color can be used with abandon and it is still free!  

This manual is for teaching and learning. Most of  the concepts herein are 
delivered more rigorously and in more detail in: 

Allmendinger, R. W., Cardozo, N. C., and Fisher, D., 2012, Structural Geology 
Algorithms: Vectors & Tensors: Cambridge, England, Cambridge University 
Press, 289 pp.

Please refer to that published resource if  you use the concepts here in your own re-
search. 

Rick Allmendinger 

Ithaca, New York, August 2015 
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Chapter 1 
Measurement: What and How 

Introduction 
The purpose of  the laboratory portion of  most structural geology courses is 

to learn how to define quantitatively the geometry of  deformed rocks. Further-
more, we would like to develop the tools to allow us to convert, easily and precisely, 

between the geometries of  rock bodies at two different times in their history. These 
times may be the present, deformed, state and the initial, undeformed state or the 
two times may capture only a small part of  the rock's history. Finally, the lab should 
lay the groundwork for at least a basic understanding of  mechanics. All of  these 
goals require that the structural geologist be very precise about geometry and the 
coordinate systems used to define the geometry, so that is where we will start.  

Primitive Geometric Objects 
Rocks are composed of  linear and planar elements: bedding and secondary 

foliations such as cleavage can be defined, at least locally, by planes whereas things 



CHAPTER 1 MEASUREMENT & DISPLAY

like fold axes, mineral lineations, and paleocurrent directions are lines. It turns out 
that, because there is one line oriented perpendicular to any particular plane, all 
planes can also be represented by their corresponding perpendicular line which is 
known as the normal or the pole to a plane.  

The previous paragraph is an oversimplification because, in the vast majority 
of  cases, all of  these lines have a direction in which they point. The paleocurrent, 
for example, flowed towards a particular direction. The pole to bedding can point 
in either the direction in which strata become younger or become older. The direc-
tion matters and thus our geological lines commonly have an arrowhead and tail; 
that is, they are a geometric and mathematical quantity known as a vector. In 
some cases, we care about the length, or magnitude, of  our vector as in the case 
of  the displacement of  a fault or the thickness of  a stratigraphic unit. But in many 
other cases, we only care about its orientation in space. We will use vectors exten-
sively in subsequent chapters but before we can do that there are some more basic 
things to address: how do we measure lines and planes and what coordinate systems 
do we use, because it is impossible to talk about vectors without reference to a co-
ordinate systems.  

Data Collection 

Instruments Used in the Field 

Traditionally, a structural geologist used a geological compass/clinometer to 
measure the orientation of  features of  interest. These are precision analog instru-
ments that enable the geologist to measure the orientation of  a feature of  interest 
to within a degree or less. The Brunton Pocket Transit (Fig. 1.1), most commonly 
used in North America, excels at taking bearings — horizontal angles measured 
with respect to North — and inclinations — angles in a vertical plane measured 
with respect to the horizontal — over long distances; thus the word "transit" in its 
formal name, though most people just refer to it as a "Brunton compass". In Eu-
rope and other parts of  the world, a Freiberg compass is more common. This type 
of  instrument is less suitable for sighting bearings over long distances but is very ef-
ficient at measuring planar and linear features by placing the top or edge of  the 
compass flush against the rock. 
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Precision analog compasses have 
been around for centuries but it is likely 
that, within a few years, they will largely be 
replaced by digital devices, most commonly 
in the form of  smart phone programs or 
apps (Appendix B). Most smart phones con-
tain accelerometers, gyroscopes, and elec-
tronic magnetometers which enable apps to 
determine the exact orientation in space. 
Additionally, such devices also keep accu-
rate track of  the time and date and can de-
termine their position very accurately using 
the Global Positioning System (GPS) as well 
as triangulation on cell phone towers and 
wireless networks. Thus, one can hypothetically capture a large number of  mea-
surements quickly using a compass app on a smart phone. Several such apps are 
already available for iOS and Android operating systems and, with proper calibra-
tion, can yield excellent results. To date, most smart phone compass apps for geo-
logical use have taken to mimicking analog compasses and thus use the same ter-
minology and coordinate system. There is a great deal of  room for innovation in 
this space and it is likely that future apps will provide substantially more informa-
tion. As a simple example, it is not possible to measure directly the pole to a plane 
with a traditional analog compass; the geologist must do a simple calculation in the 
field or more likely back in the office to get this value. A smart phone app, like Stere-
onet Mobile (Appendix B), measures the pole to a plane directly rather than the strike 
and dip separately. Thus, the phone can be placed flush on the bedding surface in 
any orientation, yielding the correct result.  

Measuring Lines and Planes 

Both types of  compasses and most smart phone compass apps measure bear-
ings or azimuths clockwise with respect to the rotation axis of  the Earth, i.e., north, 
and the angle downward or upward from the horizontal. The previous sentence has 
several important assumptions built in that are seldom explicitly stated: what is our 
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coordinate system and what are the conventions used to indicate whether a number 
is positive or negative? Traditionally in structural geology, horizontal angles are 
positive measured clockwise from North and vertical angles are measured positive 
downwards. If  you think about it for a minute, this is just the opposite of  the con-
vention that you use when you make a graph or plot data on a map. Graphs follow 
an engineering convention where angles are measured positive up from the x-axis 
(i.e., counterclockwise) and on maps, elevations are positive upward and depths are 
negative! The point is, it doesn't matter what convention you choose as long as you 
are clear and consistent. In a subsequent chapter, we will learn how to change from 
one convention and corresponding coordinate system to another, an operation that 
will help us solve lots of  interesting problems.  

A plane can be defined by the azimuth of  a horizontal line contained within 
it, known as the strike and the maximum angle measured downward from the 
horizontal to the plane, a quantity knows as the dip (Fig. 1.2). The azimuth of  the 
dip — that is, the projection of  the dip onto the horizontal — is known as the dip 
direction or dip azimuth. The true dip direction is always 90° from the strike. 
The most convenient way to think of  the strike line is to imagine the plane half-

MODERN STRUCTURAL PRACTICE 4 R. W. ALLMENDINGER © 2015-20

plungerake

N

str
ike

horizontal plane

vertical plane upward pole or 
normal vector

dip

trend

line A

Figure 1.2 — Orientations 
of  lines and planes. Lines 
are defined by their az-
imuth or bearing — the an-
gle with respect to North 
measured in a horizontal 
plane — and their plunge, 
and angle measured 
downwards from the hori-
zontal in a vertical plane. 
Likewise, planes are repre-
sented by the orientation 
of  a horizontal line within 
the plane (the strike) and a 
vertical angle (the dip). Al-
ternatively, you can specify 
the orientation of  a plane 
by its dip direction and dip, 
or the trend and plunge of  
its pole.



CHAPTER 1 MEASUREMENT & DISPLAY

submerged in a body of  water. Because the surface of  the water is necessarily hori-
zontal, the waterline on the plane is a horizontal line in the plane (Fig. 1.3).  

The dip deserves further consideration. Let’s say that you are studying a ver-
tical road cut in a region where the rocks have a uniform strike and dip. The orien-
tation of  the road cut will determine what you see: if  the road cut is parallel to the 
strike, then the strata will appear to be flat because the strike is a horizontal line in 
the plane of  bedding (Fig. 1.4, left block). If  the road cut is perpendicular to strike, 
then you will see the true dip of  bedding. At any other orientation of  the road cut, 
you will see an apparent dip of  bedding, which is always less than the true dip 
(Fig. 1.4, right block). Problems involving apparent dips are extremely common in 
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structural geology. In subsequent chapters, we will learn quantitative methods for 
calculation of  true dip from two apparent dips or apparent dip given true dip and 
apparent dip direction but for now a little practice in visualization is in order. 

The specification of  a strike and dip for a plane is subject to a number of  po-

tential ambiguities that do not plague the dip direction and dip format. Which di-
rection of  the strike line do you use? How do you make sure that the plane dips in 
the correct direction? Because in the past structural geologists have tried to ac-
commodate all possible combinations of  strike direction and dip direction — that is 
they did not settle upon a standard and stick to it — a number of  inefficient and 
potentially error-prone formats have sprung up (Fig. 1.5). The “quadrant” format is 
perhaps the worst offender: one must write down (correctly!) a combination of  five 
numbers and letters such as “N 47 W, 22 S”. The student is strongly encouraged 
not to use this format even though you will need to know how to read it. One can 
eliminate two letters simply by using the azimuth of  the horizontal bearing: 313, 22 
S. In this book, we will use either dip direction/dip or more commonly a format 
known as the right hand rule (RHR). Using the RHR, one gives the strike direc-
tion such that the dip is to the right when looking in the direction of  the strike az-
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Figure 1.5 Conventions for 
how to specify the orienta-
tions of  two planes that 
share the same strike line. 
Specifying the rake of  a line 
is also given. Stick figure is 
looking away from the 
reader and holding out his/
her right hand. Avoid using 
the quadrant format!
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imuth (Fig. 1.5) . Thus, we can further reduce the plane orientation given previous1 -
ly to: 133, 22. 

The orientation of  a line is also specified by a horizontal azimuth, or trend, 
defined by the projection of  the line onto the horizontal plane and the plunge, a 
vertical angle measured from the horizontal downwards to the line (Fig. 1.2). Note 
that for lines, or vectors, where the the arrowhead points upwards, their plunge has 
a negative value. There are many times in geology when we are interested in lines 
that are contained within planes: for example, a paleocurrent direction in sedimen-
tary bedding or slickensides on a fault plane. In these cases, it is often most conve-
nient to measure the angle between the strike of  the plane and the line of  interest, 
which is known as the rake or pitch (Figs. 1.2, 1.5). Although strikes and trends 
are measured in horizontal planes and dips and plunges in vertical planes, the rake 
is commonly measured in an inclined plane. Traditionally, the rake has been mea-
sured from either end of  the strike line, yielding two possible values, with the cor-
rect value identified by giving the general quadrant direction. This is a recipe for 
confusion! The convention followed here is that the rake is always measured from 
the given strike azimuth and thus varies between 0 and 180°. 

There are several ways to measure the orientations of  lines and planes. The 
two most common have their origins in the unique capabilities of  the two types of  
compasses mentioned earlier: Freiberg compasses, as well as certain modern ver-
sions of  the Brunton compass, can measure dip and dip direction in a single opera-
tion. To measure a plane, the top cover of  the compass is rotated so that it is flush 
against the rock layer. An air bubble is brought to the center of  the bullseye level on 
the face of  the compass, ensuring that the compass face defines a horizontal plane. 
The geologist can then read the dip azimuth of  the plane from the number that the 
North needle points at on the face of  the compass. The vertical angle that repre-
sents the dip is read directly off  a scale on the side of  the compass.  

If  one is using a traditional Brunton compass, a different approach is used: 
First, the side edge of  the main part of  the compass is placed on the rock and ad-

 Two other reasons for using the RHR will be seen in a later chapter: (a) the strike, true dip, and pole (SDP) define a 1

right handed cartesian coordinate system that is convenient for solving problems related to bedding; and (b) double 
couple focal mechanisms of  earthquakes are commonly giving using the Aki-Richards convention where the plane is 
specified using RHR and the sign of  the rake gives the sense of  slip (positive for thrust faulting and negative for 
normal faulting.
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justed by rotating it until the bullseye level is level. One can then read the strike of  
the plane as the number to which the north arrow points. It takes a second opera-
tion to measure the dip angle: the side edge of  the compass is placed flush on the 
rock so that the brass arm of  the compass points either up or down dip. The lever 
on the back side of  the compass is then rotated until the bar level is horizontal and 
the dip value (or apparent dip value) read off  of  the clinometer scale on the face of  
the compass. 

Uncertainties 

Of  course, rocks seldom define perfectly smooth planes or exactly straight 
lines. They have irregularities that can be quite significant. Several field methods 
have been developed for dealing with this fact. Students are commonly admonished 
to place a field book or other non-magnetic planar object on the surface of  the 
plane to be measured to smooth out the irregularities. Using a more advanced field 
technique, the geologist positions themselves so that their eye is in the plane of  
bedding and they see the plane “edge-on”. They then set the clinometer of  a Brun-
ton-style compass to horizontal and sight through the hole in the mirror to located 
a horizontal line in the plane. Finally, they take a bearing on the horizontal line in 
the plane to get the strike. This method does a better job of  smoothing out the ir-
regularities at the scale of  the entire outcrop and can also be used to measure a 
plane’s orientation where one cannot physically access the plane (e.g., across a roar-
ing river or a busy six lane highway). It does, however, take considerable practice to 
master! 

Without knowing why one is measuring the plane in the first place, it is im-
possible to know which is the best method to use. For a regional mapping job, one 
commonly wants the best orientation at the scale of  the entire outcrop. On the oth-
er hand, the variations, themselves, maybe the subject of  study as for example 
where one is trying to define asperities on a fault plane. However, the scale-invari-
ant nature of  irregularities in any natural surface or linear feature means that, 
whatever the scale of  the problem being addressed, the measurement of  its orienta-
tion will not be perfect. 
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In addition to natural irregulari-
ties, there are other reasons why it is 
impossible to define the “correct” strike 
and dip of  the plane. Two different ge-
ologists may use slightly different 
methods for measuring a line or plane 
and even the same geologist who makes 
multiple measurements of  the same 
plane at the same location will come up 
with a range of  values because of  
seemingly trivial changes in measure-
ment methodology. Thus, ideally one 
would make multiple measurements of  
a plane or a line and average them. 
That way, although we cannot state 
with certainty what the “correct” orien-
tation is, we could at very least come up with the best estimate of  the orientation 
and even use standard statistical techniques to calculate the uncertainty (standard 
deviation) in the orientation. We will do exactly that in a following chapter.  

 The uncertainties we have discussed so far are of  the type known as ran-
dom, uncorrelated errors (Fig. 1.6a, b). There is no way to predict whether the 
next measurement will be higher or lower than the previous one or, within some 
range, by how much. They result from stochastic variations in natural features 
and our own inability to measure them completely accurately. These errors are 
amenable to calculation of  a mean and a standard deviation (which we will do in 
the next chapter). The smaller the uncertainty, for these types of  errors, the more 
reliable the result. Non-random, systematic or correlated errors are an en-
tirely different beast (Fig. 1.6c, d). Take for example, the geologist who unwittingly 
measured a bunch of  strikes and dips near a large magnetic body or with the dec-
lination set incorrectly on his or her compass. In the case of  nonrandom errors, 
even though the statistics might be good (e.g., Fig. 1.6c), the results will be crummy. 

This discussion brings up two important terms: accuracy and precision. Ac-
curate means that our measurements are a reasonably good representation of  the 
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In past times and even today, some structur-
al geologists acknowledge(d) that their strike 
and dip measurements were “only good to 
about 5°” and thus they would round their 
dip values on their maps to the nearest five 
degree increments. It is relatively easy to tell 
on a published map when they did this even 
though it is seldom stated explicitly because 
all of  the dips on the map end in either a 0 
or a 5! Needless to say, this is a poor substi-
tute for actually determining the natural 
variation in our measurements, and even 
stating that a dip is 33±5° is better than 
recording the dip as “35°”. Maps with strike 
and dip value recorded to the nearest 5° 
leave something to be desired!
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true value, even if  we can never know exactly what the true value is. Precise, on 
the other hand, means that a measurement has been made with instruments that 
record the observation to a large number of  significant figures. Ideally, our mea-
surements should be both accurate and precise (Fig. 1.6a). Even experienced scien-
tists, however, often fall into the trap of  thinking that because a measurement is 
precise, it must also be accurate; that is a fallacy. In the case of  nonrandom errors, 
our measurement can be very precise but not very accurate (Fig. 1.6c). Earlier in 
this chapter, we mentioned the advent of  data collection via digital devices such as 
smart phones. With any digital device, however, one must be careful to acknowl-
edge that, although the answer produced is precise, its accuracy must not be as-
sumed but proven. Digital sampling systems are highly subject to nonrandom er-
rors! 

Graphical Representation of  Orientation Data 
There are two fundamental ways that structural geologists display their ori-

entation data with quantitative rigor. In maps, we are concerned about both ori-
entation and the spatial relation of  one feature to another. In the second type, 
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Figure 1.6 — Illustration of  the 
difference between random and 
systematic errors. Each dia-
gram shows a target with a 
number of  shots. Note that, in 
this case, we know what the 
“right” answer was (i.e., the 
center of  the target) and there-
fore the systematic error is 
clear. In the natural features 
that we study, we don’t know 
what the right answer is (i.e., 
there is no target) and thus we 
can evaluate whether the ran-
dom errors are large or small 
but we cannot evaluate the sys-
tematic errors. Based on a con-
cept by Taylor (1997).
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stereographic projections, commonly called stereonets, we are just concerned 
with orientations, alone. 

Maps 

Geological maps are one of  the most fundamental, original data sources in 
our profession. They show the distribution, known and inferred, of  rock units on 
the surface of  the earth, the nature of  contacts separating them (e.g., stratigraphic, 
unconformities, intrusive contacts, faults), and are the basic way that we evaluate 
the distribution and geometry of  deformed rock layers. Maps commonly show 
strike and dip symbols in the layered units, and may show the orientations of  sec-
ondary structures such as cleavage, lineations, and joints. A map is a formal scien-
tific document and should be treated as such. 

All maps are a projection of  features that lie on the irregular, but approxi-
mately spherical, surface of  the earth onto a horizontal plane (Fig. 1.7). This has an 
immediate practical implication: when you measure a distance on a map (i.e., a 
map distance), it is a horizontal distance not the longer distance that you actually 
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Horizontal Surface

Figure 1.7 — Map as a projection onto the horizontal surface. In this case, 
we show contour lines (lines of  equal elevation) on an oblique view of  the 
topography and projected onto a horizontal surface
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travel along a slope (i.e., the slope distance; Fig. 1.8). The slope angle is mea-
sured between the slope and the horizontal and is usually calculated by: 

	  

where Δ means “change in”. A related measure of  steepness of  slope is the percent 
grade, which you are likely to have seen on highway signs in mountainous terrain: 

	 . 

Humans are notoriously poor at estimating slopes. On a road over a steep moun-
tain pass, you are likely to see a sign reporting “8% Grade Ahead”. If  you take the 
arctangent of  0.08, that “steep” grade has a slope angle of  just 4.6°! 

Beyond this practical implication, there is a more profound aspect to the fact 
that maps represent projections: Although the Earth is approximately spherical, the 
piece of  paper or computer screen that displays the map is flat. There is inevitably 
some distortion that occurs when we project a spherical surface onto a flat medium. 
There are a myriad of  map projections that accomplish this task depending on 
the size of  the map area and the purpose for which the map is needed (Snyder, 
1987). For now, you mostly need to know that all maps represent tradeoffs of  the 
following factors: 

• Conformal — preserves the same scale in every direction, locally, 
thus maintaining the correct shape of  the features 

slope angle = tan−1 Δ elevation

map distance

⎛
⎝⎜

⎞
⎠⎟

percent grade = Δ elevation

map distance

⎛
⎝⎜

⎞
⎠⎟
×100
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Figure 1.8 — Map distance, slope dis-
tance, and slope angle. The slope dis-
tance is always larger than or equal to 
the map distance.
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• Equal Area — preserves the area throughout, but distorts the shape 

• Equidistant — depicts the correct distance between a point at the 
center of  the projection and points in any direction away from the 
center 

• Equal Angle — Shows true angles or bearings, locally 

You cannot have all of  the above in a single map! For example, a map that is both 
conformal and equal area is impossible, as is a map that is equidistant and equal 
angle. As we shall see below, stereonets have exactly the same limitations because 
they are fundamentally the same thing: a projection of  spherical data onto a flat 
screen or paper. 

Map coordinates are usually given in terms of  longitude and latitude. You 
are, of  course, familiar with a globe with its lines of  longitude running from pole to 
pole and lines of  latitude running around the globe perpendicular to its rotation 
axis (Fig. 1.9). Lines of  longitude are known as great circles; if  you slice the globe 
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Figure 1.9 — Left: the globe with lines of  longitude and latitude. Right: a cut-away view of  
the earth showing how the position of  New York City is defined by a vector from the cen-
ter of  the Earth that pierces the surface of  the sphere in a point
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through the middle, the intersection on the surface is a great circle. A more con-
crete way of  visualizing great circles is to think of  a peeled orange or grapefruit: 
the lines made by the segments of  the fruit are great circles because all of  the seg-
ments meet in the middle. You have probably heard people speak of  “great circle 
routes” as the shortest distance between two points. That is true because that line is 
an arc or segment of  a great circle. The lines of  latitude are small circles be-
cause they do not cut through the center of  the globe. The complete coordinates of  
any point on a globe, say New York City, are given by its longitude — the angle be-
tween the great circle that goes through Greenwich, England and that which goes 
through New York — and the latitude — the angle between the equator and a line 
drawn from the center of  the Earth to New York (Fig. 1.9 right). Lines through the cen-
ter of  a sphere intersect the surface at a point (e.g., New York City). Finally, you can see 
that if  you were to rotate the vector from the center to New York City about the ro-
tation axis of  the Earth, it would sweep out a cone and the intersection of  the cone 
with the sphere produces a small circle (Fig. 1.9), which is why they are sometimes 
called conic sections. 

Mapping has been revolutionized in the last decade or two by three trends: 
(1) the advent of  geographic information systems (GIS) of  varying complexity, (2) 
the availability of  large digital data sets, especially digital topography and ubiqui-
tous satellite imagery with resolutions of  a few meters, and (3) small portable de-
vices like tablets, smart phones, and ruggedized laptops equipped with GPS re-
ceivers for accurate positioning. Mapping has gone digital and with it, the need for 
geologists who know how to manipulate and extract information from large collec-
tions of  numbers has increased dramatically. 

Ironically, as the power of  the tools and data sets we use has increased, the 
number of  geologists creating new maps has plummeted. Many students in struc-
tural geology today will never get a chance to make a geologic map beyond what-
ever they experience in field camp. Even so, today’s geologists need to know how to 
extract quantitative information from the reams of  paper maps published by state 
and federal geological surveys for more than 100 years. A few years ago, this would 
have meant spreading the map out on a drafting table with scale, compass, and 
protractor in hand and carefully carrying out graphical constructions. Today, we 
have a variety of  software tools available to do these tasks and many government 
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entities have made raster images of  maps available online at little or no cost. We 
will work with these scanned maps extensively in this course. 

The way we represent the orientation of  a planar feature on a map is with a 
strike and dip symbol (Fig. 1.10). The exact nature of  the symbol varies with 
the feature that it represents, but they all have the same basic design: a long line 
drawn parallel to the strike of  the planar feature and a short tick mark indicating 
the dip direction. The magnitude of  the dip is commonly shown whereas the strike 
value is not. Linear features, like paleocurrent directions, are shown with a lin-
eation symbol which is an arrow with the value of  the plunge shown at the ar-
rowhead (Fig. 1.10). 

In addition to strike and dip symbols on maps, there is another way to ex-
tract orientation data: because surface of  the Earth is irregular — that is, it has 
topography — the way planar units cross the surface of  earth reflects their orienta-
tion. We call this the rule of  V’s because, when seen in map view, contacts that 
represent planar surfaces make the form of  the letter “V” when they cross topog-
raphy. Where a bed crosses a valley, the tip of  the “V” points downstream when the 
bed is inclined or dips downstream (Fig. 1.11) and it points upstream when the bed 
dips upstream, is horizontal, or dips downstream at an angle less than the stream 
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Figure 1.10 — Strike and dip symbol for bedding dipping 30° to the east-south-
east and a lineation symbol showing the trend and plunge of  a linear feature in 
the plane of  bedding in map view (left) and visualized as a block diagram 
(right).
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gradient. Vertical surfaces cross topography in a straight line, V-ing neither up nor 
downstream. 

Of  course, to interpret correctly the orientation of  beds using the rule of  V’s, 
one has to be able to determine hills, valleys, and which way the rivers flow. Most 
geologic maps published by geological surveys contain topographic contours, 
lines of  equal elevation. If  you were to walk exactly along a contour line, you would 
go neither up nor down hill; walk perpendicular to the contours and you are going 
in the direction of  maximum slope. Modern mapping increasingly uses shaded 
digital elevation models (DEMs) to portray topography but for quantitative 
analysis students still need to know how to use topographic contour maps. 
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Figure 1.11 — The Rule of  V’s depicted using 
the same geologic map visualized in different 
ways. Upper left: the map has been draped over 
a digital elevation model and shaded with an 
artificial sun in the northeast. Note how the 
geological units, especially “Js” cross the valley 
in the middle of  the map, “V-ing” down 
stream. Upper right: oblique block diagram of  
the same map area, illustrating how the beds 
dip down stream to the East (right). Lower left: 
traditional three-point construction for calcu-
lating the dip. Two points along the lower sur-
face of  Js are at the same elevation (7600 ft.) 
and thus determine the strike direction. The 
third point is at a lower elevation. See Figure 
1.12 for construction.
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Stereonets 

Structural geologists use stereographic projections to display orientation data 
when the spatial relation of  the individual observations with respect to each other is 
not important. A stereonet can also be used to do complex calculations such as ro-
tations, calculating lines of  intersection, etc. by placing a sheet of  tracing paper 
over the grid of  lines and rotating it about the center. That function has been large-
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δ = tan−1 800 ft
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⎞
⎠⎟ = 38°

Figure 1.12 — Classical three point 
construction to determine the dip of  
bed Js in Figure 1.11. The diagram is a 
vertical plane oriented in the true dip 
direction (parallel to the line labeled 
“1025.5” in Figure 1.11. Note that maps 
are a projection onto a horizontal 
plane.

(a) Equal Angle (b) Equal Area

Figure 1.13 — Two types of  stereonets: (a) the equal angle, or Wulff, net; and (b) the equal 
area, or Schmidt, net. All of  the blue shaded small circles are the same size and shape on 
the surface of  the sphere (they all have a 10° radius). You can see that the equal angle net in 
(a) is conformal (shape is preserved, that is they are all circles) but is not equal area or 
equidistant (the 10° spacing gets bigger as you go from the center to the edge of  the net). 
Conversely, in the equal area net (b) the circles are distorted except at the center but they 
all have the same area and the 10° spacing from the center outward is constant (equidis-
tant).
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ly replaced by computer stereonet programs that are far more powerful, accurate, 
and precise in terms of  computation and provide publication quality graphics au-
tomatically. Here, we use stereonets only to display orientation data. 

One’s first view of  a stereonet is instantly familiar: it looks like a globe or a 
map of  the entire Earth (Fig. 1.9 left). There are great circles, just like lines of  lon-
gitude, running from pole to pole, and small circles, similar to lines of  latitude, that 
run across the globe from east to west. Of  course, our picture of  a stereonet, just 
like the globe, on the screen is a projection of  a sphere onto a flat surface and, as 
shown in Figure 1.9, left, can only display half  of  the sphere. As with any mapping, 
depicting a sphere on a flat surface inevitably involves distortion. Two types of  
stereonets are commonly in use: the equal area (Schmidt) net and the equal angle 
(Wulff) net (Fig. 1.13). 

Stereonets used in mineralogy, structural geology, geophysics embody all of  
the same concepts as our globe. Planar features are plotted as great circles and lin-
ear features plot as points and there are different types of  distortion depending on 
the type of  projection used. In a similar fashion to our example of  a globe, miner-
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Planes intersect the hemisphere as great circles and lines plot as points. δ is the true 
dip, α is the apparent dip, and β is the angle between the strike and the trend of  the 
apparent dip. Note similarity of  (b) with Figure 1.15b.
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alogists use an upper hemisphere projection whereas in structural geology and 
geophysics we use a lower hemisphere projection (Fig. 1.14). The latter projec-
tion means that we are looking down into a cereal bowl and seeing the inside of  the 
bowl projected onto the horizontal plane through the center of  the sphere (Fig. 
1.14). Visualizing this geometry is fundamental to understanding how stereonets 
display data. 

Plotting stereonets by hand is tedious and imprecise. The basic idea is shown 
in Figure 1.15. An equal angle, or more likely equal area, grid is mounted on a 
piece of  cardboard or some other firm but thin surface. The geologist then places a 
sheet of  tracing paper over the grid and puts a push pin or thumbtack through the 
tracing paper into a hole in the center of  the firm backing to which the grid is 
mounted. The tracing paper can now rotate about the center of  the grid. After 
marking North on the tracing paper, the geologist is ready to begin plotting. To plot 
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Figure 1.15 — Plotting a plane and doing an apparent dip calculation by hand, 
by rotating a piece of  tracing paper over the stationary grid of  the stereonet. 
(a) shows the paper rotated so that one can plot the great circle that represents 
the plane, and (b) shows the tracing paper rotated back so that N on the paper 
and on the grid are aligned.



CHAPTER 1 MEASUREMENT & DISPLAY

a plane, rotate the tracing paper by an amount equal and opposite to the strike of  
the plane. For example, in Figure 1.15, the plane has a strike of  056° so the geolo-
gist rotates the tracing paper by 56° counterclockwise. Once this rotation is accom-
plished, one counts in on the east axis of  the grid an amount equal to the dip value 
and then traces by hand the corresponding great circle. Rotating the tracing paper 
back to alignment with the grid — so that north on the tracing paper is aligned 
with north on the grid puts the great circle that represents the plane in its correct 
position (Fig. 1.15b). 

The great circles and small circles on the stereonet grid are read in degrees, 
just like longitude and latitude are marked off  in degrees on the globe. In Figure 
1.15, the grid is drawn in 10° increments, whereas most paper stereonets are in 2° 
increments (most computer programs allow you to adjust the grid increment). If  
you read in along the EW grid line (Fig. 1.15), you’ll see that you can measure from 
0° at the edge of  the net (known as the primitive or horizontal) to 90° at the center; 
a vertical line will plot as a point exactly at the center of  the net (a plunge of  90°). 
Angles measured in the plane (e.g., rakes) can be determined by counting off  the 
number of  degrees along the great circle. For example, in Figure 1.15a, you can see 
that the rake of  the apparent 
dip line (that has a plunge of  
α) is 40°; likewise, the angle in 
the plane between the appar-
ent dip line and the true dip 
line is 50°. 

If  all that sounds com-
plicated, it is but nonetheless 
the procedure is a skill that 
can be learned with a small 
amount of  practice. The 
problems with this approach, 
however, are two-fold: first, 
several of  the operations have 
nothing to do with learning 
how to interpret these displays 
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Figure 1.16 — Two planes and the line of  intersection 
between the visualized in three dimensions using the 
Macintosh program Stereonet3D (Cardozo and All-
mendinger, 2013). Programs like this can help if  you 
are having trouble relating a stereonet plot to the 
three dimensional objects it represents.
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but only with the limitations of  drawing great circles by hand. How does rotating 
the tracing paper in a direction opposite to the rotation of  the strike with respect to 
north make this process clearer? Hint: it doesn’t! Second and more importantly, few 
structural geologists use paper stereonets now, anyway, as there are a number of  
good programs available for Mac, Windows, Android, and iOS. The computer cer-
tainly isn’t virtually rotating a piece of  paper with respect to a grid; it is using sim-
ple but powerful mathematical algorithms and displaying the results on a stereonet 
because that’s what structural geologists are used to! Thus, in most of  this book, we 
are going to learn how to do structural calculations the way the computer does and 
only use stereographic projects to visualize our results (Fig. 1.16). 

Computing 
Structural geologists use a large number of  computer programs to speed up 

their work. These programs may be written in a variety of  languages: a few 
decades ago the language was likely to be Fortran, Pascal, or Basic; today it is more 
likely to written in some flavor of  C, Python, Java, or Matlab. What is important, 
however, is not the language but the algorithm behind the language. In this book, 
we will use a very simple computing environment, the humble spreadsheet pro-
gram, usually exemplified by Microsoft Excel®. There are several advantages to 
this approach:  

1. You have probably used spreadsheets before so they are familiar. 
That means that you can just focus on the algorithm and not worry 
about language syntax, development environment, etc. 

2. It is quite likely that you already have Microsoft Office® installed 
on your computer and thus you already have Excel®. No addition-
al purchase necessary! 

3. A spreadsheet is naturally in the form of  a table, or matrix, and 
many of  the things we would like to calculate in structural geology 
are best thought of  as tables of  numbers. 

Computers have a couple of  traits that you will probably find either exhilarating or 
frustrating: they are dumb and they are logical. Because computers are dumb ma-
chines, they are extremely literal: they will do exactly what you tell them to do, even 
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if  it is not really what you wanted! Second, be-
cause they are logical, you have to understand 
the logic of  your calculation before you can tell 
the computer what to do. Nonetheless, comput-
ing is a profoundly powerful skill for a scientist 
to possess, and it is in that spirit that this book 
emphasizes simple computing via spreadsheets 
to solve structural geology problems. Once you 
understand the power of  the calculation, that is 
the algorithm, you will have greater motivation 
to learn a programming environment much 
more powerful than a spreadsheet program. 

A spreadsheet, like any program, has cer-
tain rules that one must follow. For those of  you 
who have never used a spreadsheet for anything 
more than making a table, we offer the following 
abbreviated set of  rules: 

• To fill a cell with a computed value, the first character in the cell 
must be the equals sign, “=”. Following the equals sign is the for-
mula that you want to compute. 

• In formulas, one refers to the input data, whether a number or an-
other computed value, via its cell address. The cell address is com-
posed of  a letter that indicates the column of  the cell followed by a 
number that indicates the row. For example, “C3” refers to the val-
ue in column C, row 3. When entering a formula, after the equals 
sign you can usually enter the cell address by just clicking on the 
cell that you want. 

• When you copy a formula from one part of  the spreadsheet to an-
other, the cell addresses are adjusted automatically — that is, the 
cell addresses are relative. If  you have a formula in C3 that uses the 
value in A1, when you copy the formula to D4 (one column over 
and one row down from the original), it will automatically adjust to 
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Those of  you who already know a 
programming language should, 
by all means, do the exercises in 
this book using that language 
rather than in a spreadsheet. 
More advanced programing  lan-
guages have many features that 
simplify the overall task of  im-
plementing an algorithm. For ex-
ample, a simple do/for loop in a 
programing language is more 
cumbersomely implemented in a 
spreadsheet by manually copying 
and pasting rows containing for-
mulae and nested loops are even 
more difficult.
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use the value in B2 (one over and one down from A1). Relative cell 
addresses are one of  the reasons why spreadsheets are so powerful. 

• Sometimes, however, you want to keep using the original value 
even though you have copied the formula. For this you need an ab-
solute cell address which is indicated with a “$” in front of  the col-
umn and/or row letter/number. If, in the above example, you 
wanted to keep using the value in A1 when the formula was copied 
to a different cell, you would type the address as “$A$1” in the 
formula. 

• Finally, for now, all computer languages, including spreadsheets, do 
trigonometric calculations using radians rather than degrees. Use-
ful formulae for converting from radians to degrees are: 

	 1 radian =  = 57.2958°	 (1.1) 

	 90° = ;     180° = π;     270° = ;     360° = 2π

Say you want to calculate the sine of  the angle in cell A3. In the 
cell where you want the answer to appear (e.g., A4) you would type:  

 =SIN(RADIANS(A3)) 

To convert the value in A4 back to degrees you would enter 

 =DEGREES(ASIN(A4)) 

180∘

π
π
2

3π
2
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Exercises—Chapter 1 

1. For the following block diagrams, fill in the bed geometry on each exposed side 
of  the block. For each side, indicate whether one would see a true dip or an ap-
parent dip of  the bed if  you observed that side of  the block head on (looking 
perpendicular to that face of  the block). 
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2. For each of  the map snippets below, state qualitatively which way the bedding 
dips. Start by using the topographic contours to identify ridges and valleys and 
then determine which way the creeks in the valley flow (i.e., the up- and down-
stream directions). Then, use the way that the stratigraphic contacts cross the 
valley to determine the dip direction. For each map, it is sufficient to state that 
“the bedding dips to the east” or “the bedding dips to the SW”. 
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3. Below are five orientations of  planes. Convert them into right-hand rule for-
mat:  
a. Convert from Quadrant to RHR format: (i) W 15 S, 61 S; (ii) N 56 E, 20 

NW; (iii) S 30 E, 33 W;  
b. Convert from Dip direction and dip to RHR format: (i) 237, 74; (ii) 099, 48 

4. The instructor will set up a tilted layer or rock in the lab or will take you out to 
a place where you can measure strikes and dips of  a natural planar surface. 
Each person in the class, including the instructor or other experienced geolo-
gist, should measure the plane the same number of  times, at least10 or 15 times 
would be good. 
a. Describe the variation in your answers: How much variation in strike is 

there? In dip? Does it appear easier to measure the strike or the dip more 
accurately? What factors might determine which is easier? 

b. Now compare your answers to those of  your classmates and instructor. Can 
you tell which answers are more precise or whose are more accurate? How? 

5. Plot your results from Question 4 in a stereonet program as (a) great circles, and 
(b) poles to the planes. 
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6. The following stereonet plots show planes and or lines. Describe the orienta-
tions in each and answer any additional questions written next under the plot. 
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what is the approximate orienta-
tion of  the line of  intersection of  
the black and blue planes?
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All of  the questions below apply to the following table. Each row in the table is a 
single datum, i.e. a single plane with one or more lines in it. Planes are given in az-
imuth format and lines in trend, plunge format. Asterisks show missing values; *** 
is a missing azimuth or bearing, and ** is a missing plunge or dip. Some of  the val-
ues are redundant: for example, once you know the true dip and dip direction, you 
also know the strike and dip. 

7. Solve for the missing values for each of  the three datums using a stereonet to 
solve for each of  the missing values in each row. 
(a) In the second datum, above, you are given two apparent dips. Use a stere-

onet to determine the angle between those to apparent dips, measured in 
the plane that contains them. 

(b) Assume that the plane in datum three is a bedding plane. Restore the plane 
to horizontal. What were the original bearings of  the two apparent dip di-
rections prior to the tilt of  the bedding? 

Rotate the plane in row 1 by returning the plane in row 2 back to its original hori-
zontal position. What is the orientation of  the plane in row one after you have per-
formed this rotation? 

Datum Strike & Dip of Plane True Dip (T&P) Apparent Dip(s)  
(T&P)

1 050, **, * ***, ** 090, 25

2 ***, **, * ***, ** 159, 34  and  270, 43

3 ***, **, * 010, 48 321, **  and  090, **
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Chapter 2 
Coordinate Systems and Vectors 

Coordinate Systems 
When we use a compass to measure features of  interest to the structural ge-

ologist, we are implicitly using a spherical coordinate system defined by the rotation 
axis and surface of  the Earth. Another spherical coordinate system based on the 

Earth is given by latitude and longitude. Geologists have successfully used these co-
ordinate system for a couple hundred years; they are accurate and work well be-
cause the Earth is a nearly spherical body. As we saw in the last chapter, any rec-
tangular coordinate system applied to the Earth must necessarily have some distor-
tion. The most obvious examples of  this are maps where, via various algorithms, 
the sphere of  the earth is projected onto a flat piece of  paper (or computer screen). 
A map can display areas or angles correctly but not both, something that also ap-
plies to Stereonets. 

Even so, just as it is more convenient to carry around a flat map that can be 
folded, rolled up, or displayed on a computer screen rather than a physical globe, it 
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is commonly more convenient to do structural 
calculations in rectangular Cartesian co-
ordinates. Those are the main focus of  this 
section. Before we get to Cartesian coordinates 
commonly used in geology, a few formalities 
are in order.  

The axes of  any graph have positive and 
negative directions, of  course, and most of  us 
are used to seeing two dimensional graphs 
where the horizontal axis, commonly referred 
to as the “X” axis or abscissa, is positive to the right and the vertical “Y” axis (the 
ordinate) is positive upwards. This means that angles are measured positive in a 
counterclockwise direction from the horizontal axis, just the opposite of  how angles 
are measured on a compass rose (clockwise from the top). But, what happens if  we 
add a third axis? How do we determine the positive direction for that axis?  

Convention suggests that we should follow a right-handed naming con-
vention: If  you hold you hand so that your thumb points in the positive direction 
of  the first axis, your fingers should curl from the positive direction of  the second 
axis toward the positive direction of  the third (Fig. 2.1). To follow this convention in 
the case of  our graph above where X is horizontal and points to the right, we have 
two options: the new third, or “Z”, axis can be horizontal and point off  the page 
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The three axes of  a Cartesian co-
ordinate system are commonly re-
ferred to as X, Y, and Z. We start 
out the same way here because that 
is most familiar, but when we start 
talking about coordinate systems 
more formally, we will switch to 
using X1, X2, and X3, which are 
more convenient for numerical cal-
culations in a computer.

Figure 2.1 — (a) Right-handed 
and (b) left-handed coordinate 
systems. As the disembodied 
hand shows, for a right-hand-
ed system, if  the thumb of  the 
right hand points in the direc-
tion of  positive X1, then the 
fingers curl from positive X2 
towards positive X3.

(a) Right handed (b) Left handed

+X1 (+X)

+X2 (+Y)

+X3 (+Z) +X2 (+Y)

+X3 (+Z)

+X1 (+X)
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towards the viewer, or we can rename the vertical axis the Z-axis and add a new 
horizontal Y-axis pointing into the page away from the viewer. Though neither are 
wrong, the second option is the more common of  the two and is, in fact, the coor-
dinate system used in maps: the east direction is the first axis, the north direction 
the second, and elevation (positive upwards) is the third. This means that a car 
traveling southward is going in the negative direction. The point is, the labeling of  
axes is not arbitrary but follows well-established conventions. This “map” conven-
tion of  axes is used extensively in geophysics as well as mapping and is sometimes 
referred to as an East-North-Up (ENU) system (Fig. 2.2). 

Structural geologists, because of  our reliance on magnetic compasses and 
out predilection for treating angles measured downwards from the horizontal as 
positive, use a different convention: We treat the North direction as the first axis, 
the East direction as the second axis and the Down axis as the third axis, an NED 
coordinate system (Fig. 2.2). This system is consistent with angles like strikes and 
trends measured clockwise from North, and because down is positive, angles mea-
sured downwards from the horizontal (e.g., dips, plunges) are positive. Of  course it 
is easy to change between the two coordinate systems: A point that has coordinates 
(100, 200, 350) in an ENU system would have coordinates (200, 100, and –350) in 
a NED system. 
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+X3 = Down

(a) Structural Geology (b) Geophysics, Topography

+X1 = North

+X2 = East

+X1 = East

+X2 = North

+X3 = Up

Figure 2.2 — Right-handed 
coordinate systems common-
ly used in structural geology, 
geophysics, and mapping.
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Vectors: A Review 
Most structural geology students have learned the basics of  vectors in their 

math courses. We’ll first review those basic concepts and then put that knowledge 
to work because, as mentioned in the last chapter, most linear features that we 
might wish to measure in structural geology are vectors. 

Vector components, magnitude, and unit vectors 

Because structural geometry is three dimensional, all of  our vectors will have 
three components. Each of  the three numbers that define a vector refer to a specific 
coordinate axis: for example, v2 (or vy) is the value of  our vector, v, projected onto 
the second axis of  the coordinate system, X2 or Y. In a NED coordinate system, v2 
is the projection of  v onto the East axis, but in an ENU coordinate system, v2 is v 
projected onto the North axis. Therefore, the numbers that define a vector depend 
on the specific coordinate system. We write out vector as: 

	 	 (2.1) 

One of  the most fundamental characteristics of  a vector is its length or magni-

tude. Magnitude is a scalar quantity because it has no directional significance and 
furthermore, it is the same in all coordinate systems. The magnitude is given by: 

	 	 (2.2) 

In two dimensions, you can see that the magnitude is calculated from the Py-
thagorean theorem which gives the length of  a hypotenuse as the square root of  the 
sum of  the squares of  the two sides (Fig. 2.3). The extension to three dimensions is 
straightforward. 

But, what if  we don’t care about the magnitude? What if  we are only inter-
ested in the orientation of  our vector? In this case, we simply assume that the vec-
tor has a length of  one and call it a unit vector. A special symbol is reserved for a 
unit vector, a triangular hat or circumflex accent over the vector symbol: . Unit 
vectors have a special property that makes them especially useful for orientations. 
The projection of  a unit vector onto a coordinate axis is just equal to the cosine of  

v = [v1 v2 v3] = [vx vy vz]

v = v2
1 + v2

2 + v2
3

v̂
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the angle that the vector makes with that axis (Fig. 2.3a). Thus, the components of a 
unit vector are: 

	 	 (2.3) 

where α is the angle with respect to the X1 axis, β with X2, and γ with X3. cosα, 
cosβ, and cosγ are known as direction cosines and, as with the magnitude, the 
proof  is straightforward in two dimension and easily extended into three dimen-
sions. 

Vector Addition, Subtraction, and Scalar Multiplication 

Vector addition or subtraction from another is no more complicated 
than adding, or subtracting, the individual components (Fig. 2.4): 

	 	 (2.4a) 

And likewise 

	 	 (2.4b) 

v̂ = [cos α cos β cos γ]

v + u = [v1 v2 v3] + [u1 u2 u3] = [(v1 + u1) (v2 + u2) (v3 + u3)]

v − u = [v1 v2 v3] − [u1 u2 u3] = [(v1 − u1) (v2 − u2) (v3 − u3)]
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Figure 2.3 — The length or magnitude of  a vector, v (in red) is calculated 
using the Pythagorean Theorem in both two (a) and three (b) dimensions.
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In scalar multiplication, each component of  the vector is multiplied by 
the same scalar quantity: 

	 	 (2.5) 

The concept of  a unit vector and vector addition allows us to define vectors 
in a more explicit and elegant way: base or reference vectors are unit vectors 
parallel to the three axes of  the coordinate system. Any vector can thus be written 
as the sum of  the three base vectors multiplied by the scalar components of  the 
vector: 

	 	  

Dot Product and Cross Product 

There are two operations that are unique to vectors and uniquely useful to 
structural geology: the dot product (also known as the scalar product) and the 
cross product (or vector product). The dot product of  two vectors yields a sin-
gle, scalar number: 

	 	 (2.6) 

If  u and v are both unit vectors, then the term . We can then rearrange 
equation 2.6 to give us an extremely convenient equation for the angle between two 
lines, which we will be using a lot: 

	 	 (2.7) 

av = a [v1 v2 v3] + = [av1 av2 av3]

v = v1
̂i + v2

̂j + v3k̂

u ⋅ v = v ⋅ u = u v cos θ = v1u1 + v2u2 + v3u3

û v̂ = 1

θ = cos−1 (v1u1 + v2u2 + v3u3)
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(a) (b)

u

v

u + v

u

–v

u – v

Figure 2.4 — Vector addition (a) and subtraction (b) via the parallelogram 
rule.
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The cross product is similarly useful because it yields a third vector which is 
perpendicular to the first two vectors (Fig. 2.5). There will be many times in struc-
tural geology when we will want to calculate a vector which is perpendicular to two 
other vectors. Notice that the direction that the third vector points depends on the 
order in which you cross the first two. The formula for the cross product is: 

	 	 (2.8) 

If  v and u are unit vectors, then the length or magnitude of  the new vector is equal 
to the sine of  the angle between the two vectors. This brings up an important 
point: the cross product of  two unit vectors produces a third vector, perpendicular 
to the first two, whose length varies between zero and one. The only time that the 
cross product produces a unit vector is when the first two vectors are at 90° to each 
other. It turns out that this is a surprisingly common occurrence in some, but not 
all, of  the problems we will face in structure. 

v × u = − u × v = v u sin θ = [(v2u3 − v3u2) (v3u1 − v1u3) (v1u2 − v2u1)]
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θ

ˆû × v

û

v̂

v × ûˆ

–�̂

�̂

Figure 2.5 — The cross product produces a 
third vector that is perpendicular to the first 
two vectors. If  u and v are unit vectors, then 
the magnitude of  the cross product is equal 
to the sine of  the angle between u and v. The 
cross product follows a right-hand rule con-
vention.
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Geological Features in Cartesian Coordinates 

Direction Cosines from Trend and Plunge 

As mentioned before, all lines in geology are vectors so it makes sense that, in 
Cartesian coordinates, the orientation of  a line should be represented by direction 
cosines. We will also represent planes by their pole or their normal vector. So, the 
question becomes, how to convert from the familiar trend and plunge, or strike and 
dip, to direction cosines? As shown in Figure 2.3, we will by convention represent 
the angle that our vector makes with the first axis (North) by the Greek letter α, the 
angle with the second axis (East) with β and the angle with the third axis (Down) as 
γ. We can get some idea of  the orientation of  a vector simply by looking at the 
signs of  the direction cosines (Fig. 2.6). The cosine function is positive (or zero) be-
tween −90° (or 270°) and 90 and 
negative (or zero) between 90 and 
270°. Thus, a line that has a trend 
and plunge in the northeast quadrant 
will have all positive direction cosines 
because the angle that it makes with 
each of  the three axes is between 
zero and 90° (red point in Fig. 2.6). A 
point in the southwest quadrant will 
be more than 90° from East and 
more than 90° from North and thus 
cosα and cosβ will both be less than 
zero. 

However, what we would real-
ly like are formulae for converting 
from spherical coordinates (trend and 
plunge or strike and dip) to direction 
cosines and back again. To calculate 
these exact values, we’re going to 
have to do a bit of  trigonometry be-
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cos α  (+)!
cos β  (–)!
cos γ  (+)

cos α  (–)!
cos β  (–)!
cos γ  (+)

cos α  (–)!
cos β  (+)!
cos γ  (+)

α

βγ

N

ED

Figure 2.6 — Lower hemisphere projection 
showing how the sign of  each direction co-
sine varies with quadrant. Note that α and β 
are angles from N and E respectively mea-
sure in inclined (i.e., non-vertical) planes, 
whereas γ is measured in a vertical plane. 
In the northeast quadrant where the red 
point is, all three direction cosines are posi-
tive.



CHAPTER 2 COORDINATE SYSTEMS & VECTORS

cause α and β are not measured in vertical planes (Fig 2.6). The basic geometry and 
the angles involved are shown in Figure 2.7. The easiest direction cosine to calcu-
late is cosγ because it is just equal to the sine of  the plunge. From the relationships 
on the horizontal plane of  Figure 2.7, you can see that: 

	 	 (2.9) 
	  

With a similar set of  derivations, one can also calculate the directions cosines for 
the pole to a plane from the plane’s strike and dip. Table 2.1 gives the complete set 
of  equations for determining the direction cosines from the spherical coordinates. 

cos α = cos (t rend) cos (plunge)
cos β = sin (t rend) cos (plunge)

Table 2.1

Axis Direction Cosine Lines Poles to Planes 
(strike & dip using RHR)

North cosα cos(trend)cos(plunge) sin(strike)sin(dip)

East cosβ sin(trend)cos(plunge) –cos(strike)sin(dip)

Down cosγ sin(plunge) cos(dip)
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α plunge

γ = 90 – plunge

β

N

E

D

cos(plunge)

trend

cos α

cos γ

cos β

v̂

Figure 2.7 — Perspective view of  the 
geometry needed to derive the direction 
cosines of  a unit vector, v, given its trend 
and plunge. The pink plane is the vertical 
plane that contains the vector.
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Trend and Plunge from Direction Cosines 

Doing the reverse calculation — trend and plunge given the direction cosines 
— is a little less straightforward. The plunge is a piece of  cake:  

	  

If  the trend varied only from zero to 180° there would be no problem, but the 
trend in fact varies from 0 to 360°. For any inverse trigonometric function — arc-
sine, arccosine, or arctangent — there are two possible angles between 0 and 360°. 
How do you choose the correct one? The answer is to use the signs of  the direction 
cosines to determine which quadrant the trend lies within. 

There are several possible ways to solve for the trend. The simplest, though 
with a caveat, is to observe from Equation 2.9 that: 

	   ∴  	 (2.10) 

From the graph in Figure 2.8 and by inspection of  Figure 2.6, you can see that: 

	   if   	 (2.11a) 

	   if  	 (2.11b) 

The caveat, of  course, is that you have to test for the special case of  : 

	 trend = 90°  if (   and )	 (2.11c) 

	 trend = 270°  if (   and )	 (2.11c) 

There are several other ways of  solving for the trend, but all involve testing the sign 
of  either cosα or cosβ. Despite the extra test required for , the tangent is 
convenient because it involves a simple addition of  180° (π radians) when . 

plunge = sin−1 (cos γ)

cos β
cos α

=
sin (t ren d) cos (plunge)
cos (t ren d) cos (plunge)

= tan (t ren d) t ren d = tan−1 ( cos β
cos α )

trend = tan−1 ( cos β
cos α ) cos α > 0

trend = 180∘ + tan−1 ( cos β
cos α ) cos α < 0

cos α = 0

cos α = 0 cos β ≥ 0

cos α = 0 cos β < 0

cos α = 0
cos α < 0
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Some Practical Applications Using Vectors 
Okay, it is time to dust off  your spreadsheet skills because even the basic 

vector operations we have looked at so far enable us to do some very powerful 
calculations. At the start, here, we will see how to set up the spreadsheet and what 
formula to type into each cell. After this section, it will be assumed that you can do 
so on your own and we will just concentrate on the equations, themselves. 

Mean Vector 

Suppose we have group of  vectors, how do we calculate the average or mean 
vector that represents the entire population of  vectors? Our vectors may represent 
paleocurrent directions, paleomagnetism vectors, slip vectors on a fault surface, or 
any other geological feature that can be represented as a vector. This first example 
involves nothing more than vector addition, with some scalar division at the end. 
Even so, this example is impossible to do via a paper Stereonet or by any other ap-
proach. For the very final step, we will see how to calculate the uncertainty about 
the mean vector. 
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Figure 2.8 — Plot of  the trend versus the tangent of  the trend.
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To determine the mean of  any scalar measurement, say temperature, we 
simply add together all of  the measurements and divide by the number of  mea-
surements. The procedure is exactly the same with unit vectors, except now you 
sum each of  the three scalar components of  the vector with the corresponding 
components of  every other vector.  The resultant vector, r, is what you get when 
you add several vectors together. Graphically, vector addition is just like placing the 
tail of  one vector at the head of  a previous vector; the resultant vector is drawn 
from the tail of  the first vector to the head of  the last vector (Fig. 2.9b). The length 
of  the resultant vector is, itself, a measure of  the 
preferred orientation of  the group of  unit vec-
tors.  If  all of  the unit vectors had exactly the same 
orientation, then the magnitude of  resultant vector, 
|r|, would be equal to the number of vectors (if  
there were five vectors, |r| = 5). When comparing 
different groups of  unit vectors with different 
numbers, it is convenient to normalize r by divid-
ing each of  its components by the number so that r 
will always vary between zero and one (Fig. 2.9c). 
Eventually, though, we will have to convert r into its 
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r

r/5 r̂

(a) (b)

(c) (d)

Figure 2.9 — The steps in a mean vector calculation, depicted graphically. (a) a 
group of  five unit vectors. (b) Adding the five vectors together and drawing the 
resultant vector (red). (c) Normalizing the resultant vector. Note that the red vec-
tor is somewhat shorter than the five unit vectors. (d) the mean vector (unit vector 
parallel to the resultant vector) calculated by dividing r by its own magnitude.

Spreadsheets and full-fledged 
computer programs are not 
very useful if  they are not well 
organized and clearly labeled 
(i.e., commented). People who 
use or modify the program 
after you, not to mention your 
Professor and Teaching As-
sistant, will thank you!
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equivalent unit vector,   (Fig. 2.9d), so that we can extract the mean vector orien-
tation. Now, let’s do the same thing numerically. 

The completed spreadsheet to calculate the mean vector for five lines is 
shown in Figure 2.10. The original data are outlined in the box beneath the trend 
and plunge and all data calculated by formulae are in blue. Note that calculating 
the magnitude of  the unit vector from the original direction cosines is redundant: 
we know that they have a magnitude of  one already. Nonetheless it is a useful check 
on your calculations to make sure that you didn’t enter any equations incorrectly. 
For this particular data set, you can see that the normalized resultant vector magni-
tude is 90% of  a unit vector indicating a fairly strong preferred orientation. 

The equations in each of  the cells in row 2-11 is given in Table 2.2 (the 
equals sign, “=”, has been omitted from in front of  each equation). Note that, for 
rows 2-6, you would use the appropriate row number in each of  the equations; all 
you have to do is fill in the equations for row 2 and then copy them to rows 3-6 and 
the spreadsheet program will automatically adjust the row numbers. Line 8 does 
the vector addition simply by summing the columns of  individual direction cosines. 
Finally, note that we have used an absolute cell reference, “$G$9”, in row 11 be-

̂r
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Figure 2.10 — Simple spreadsheet to calculate the mean vector for five vectors 
whose orientation in spherical coordinates is shown in columns A and B, rows 2-6. 
Areas with calculated values shown in blue shading and the answer in yellow. The 
formulae for those cells are given in Table 2.2. See text for discussion.
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cause all three formulae in columns D, E, and F reference the same cell in column 
G. If  we had not used an absolute reference, then when the formula in D11 was 
copied to E11, the spreadsheet would have adjusted it automatically to read E9/H9 
… not what we want at all. 

To get the trend of  the mean vector in row 11, column B,  we need to use a 
conditional statement (i.e., if… then… else…) because we have to check the sign of  
cosα as described above. The formula for the trend is: 

 =IF(D11>=0, DEGREES(ATAN(E11/D11)), DEGREES(ATAN(E11/D11))+180) 

Between the parentheses following the IF are three statements separated by commas 
(this is how spreadsheets do these things…): the first is the logical test (i.e., if  the 
value in D11 is greater than or equal to zero), the second statement is what to do if  
the logical test is true, and the third is the calculation if  the logical test is false. This 
formula takes a shortcut because it does not check for whether or not cosα is equal 
to zero, which you would clearly want to do in any general purpose program. The 
formula for the plunge in C13 is: 

 =DEGREES(ASIN(F11)) 

In both formulae, DEGREES converts from radians to degrees because the inverse 
trigonometric functions always return the angle in radians. 

Like any calculation that involved determining a mean, we can also deter-
mine the statistical standard deviation. For three dimensional mean vector data, 
the standard deviation is given by: 

Table 2.2

row(s) D  (cos(alpha)) E  (cos(beta)) F  (cos(gamma)) G  (Magnitude)

2-6 COS(RADIANS(B2)) 
     *COS(RADIANS(C2))

SIN(RADIANS(B2)) 
     *COS(RADIANS(C2))

SIN(RADIANS(C2)) SQRT(D2^2 + E2^2 + F2^2)

8 SUM(D2:D6) SUM(E2:E6) SUM(F2:F6) SQRT(D8^2 + E8^2 + F8^2)

9 D8/5 E8/5 F8/5 SQRT(D9^2 + E9^2 + F9^2)

11 D9/$G$9 E9/$G$9 F9/$G$9 SQRT(D11^2 + E11^2 + F11^2)
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	 	 (2.12) 

where p is the probability, N is the number of  vectors, R is the magnitude of  the re-
sultant vector. δαp is the apical angle of  the cone of  uncertainty at probability, p. 
For example, if  you wanted to calculate the probability at two standard deviations, 
or 95%, you would set p = 0.95. You can see that, for the perfect case of  all vectors 
having the same orientation, cosδαp = 1 and δαp = 0 because N=R. Though not 
terribly useful with so few measurements, the 2σ (or δα95) cone of  uncertainty 
around our mean vector in the data set shown if  Figure 2.10 is 28.2°: we are 95% 
certain that the correct answer lies within 28.2° of  the mean vector that we calcu-
lated. 

What we have just seen is undeniably powerful: it is exactly the calculation 
that geologists who study paleomagnetism make when they determine a paleomag-
netic pole. However, be careful: the mean vector calculations is very literal. That 
raises a common pitfall: the case where the direction of  the vector doesn’t matter 
and we are plotting exclusively in the lower hemisphere. We commonly think of  
lines that plot on the opposite sides of  a stereonet — say, 090, 05 and 270, 05 — as 
having very nearly the same orientation, that is they are very nearly parallel. How-
ever, the mean vector calculation treats them as vectors pointing in opposite direc-
tions as shown in Figure 2.11. When we add the two together, the resultant vector is 
vertical and very short. This is the right thing to do if  we are summing anything 
where the direction matters but it is not what we want if, say, intersection lineations 
are being analyzed. For these lines that have no directional significance, there are 

cos δαp = 1 − ( N − R
R ) ( 1

1 − p )
1

N − 1
− 1
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û + v̂

v̂ - û

-û
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û

Figure 2.11 — Oblique 
view of  a lower hemi-
sphere projection show-
ing the result of  adding 
to vectors with shallow 
plunges on opposite 
sides of  the net (red vec-
tors). When the vectors 
have no directional sig-
nificance, we usually 
want the blue vector.
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other methods but we’ll need to develop some additional concepts before we get 
there. 

Rake of  a Line in a Plane 

Recall that the rake of  a line is just the angle between the line and the strike 
of  a plane that contains the line. Here, we are going to follow the format that the 
rake is always given with respect to the right-hand rule strike. The dot product 
(Eqn. 2.7) will serve us nicely for this calculation. One line is given by its trend and 
plunge; the second line is the strike line which has a trend equal to the strike and a 
plunge of  zero. 

The spreadsheet for this calculation is shown in Figure 2.12. The formulae 
for the direction cosines of  the line in row 2 are straightforward and the same as 
used in the previous example. The plane in row 3 requires a bit more explanation: 
we are treating the strike as a horizontal line in the plane so we don’t actually use 
the dip value at all! Instead, the direction cosines are calculated for a line with a 
trend equal to the strike and a plunge of  zero (because the strike is a horizontal 
line… you get the idea). That is why the third direction cosine for the strike in F3 is 
equal to zero. If  a line has zero plunge, the angle that it makes with the down axis, 
gamma, is 90° and cosine of  90° is equal to zero. 

The formula for the rake in cell B5 is just: 

 =DEGREES(ACOS(D2*D3 + E2*E3 + F2*F3)) 

As before, we don’t really need and don’t even use the magnitude column but it is a 
useful check to make sure that our formulae are entered correctly. 
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Figure 2.12 — Spreadsheet for calculating the rake of  a line in a plane. Note that 
the direction cosines in row 3 are for a line with a trend of  053 and a plunge of  00.
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True Dip from Two Apparent Dips 

There are many times when we observe in nature two cuts or slices through a 
plane, but neither cut is in the true dip direction (i.e., perpendicular to strike). This 
can happen in quarry walls, road cuts, mine tunnels, etc. In these cases, we may 
have to calculate the orientation of  the plane — that is, the strike and true dip — 
from the available observations of  apparent dip. In terms of  the concepts devel-
oped in this Chapter, we know two vectors that lie in the same plane and want to 
calculate the orientation of  the plane, itself. You may recall that one way to specify 
a plane is by the normal to the plane or the pole (Fig. 2.13). The pole is, by defini-
tion, perpendicular to every line in the plane, including the two apparent dip lines, 
so our solution to this problem will use the cross product (Eqn. 2.8, Fig. 2.5). 

As before, the procedure that we will follow is similar to what we’ve done in 
other examples in this chapter: 

1. Calculate the direction cosines 
of  the two apparent dip lines 
from their trends and plunges 

2. Calculate the cross product us-
ing Equation 2.8 

3. If  the cross product gives us an 
upper hemisphere pole, which 
you can determine from the sign 
of  the third direction cosine, 
then convert it to a lower hemi-
sphere pole by multiplying all 
three direction cosines by –1. 

4. Convert the vector product to a 
unit vector by dividing by the 
magnitude of  the vector (which, 
remember, is equal to the sine of  
the angle between the two vec-
tors). 
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Figure 2.13 — Any two vectors in a plane 
can be used to find the pole to the plane us-
ing the cross product. As shown, the order 
in which you cross the vectors determines 
whether the pole is upward or downward 
pointing. The cross product of  any two unit 
vectors has a length equal to the sine of  the 
angle between the two vectors. You must 
calculate the unit pole vector, n̂ , parallel to 
the cross product before converting it back 
to trend and plunge.



CHAPTER 2 COORDINATE SYSTEMS & VECTORS

5. Determine the trend and plunge of  the pole from the direction 
cosines of  the unit vector calculated in step 4. 

6. The right hand rule strike of  the plane will just be equal to the pole 
plus 90° and the dip will be 90°–plunge of  the pole. 

The spreadsheet that carries out these steps is shown in Figure 2.14. The two lines 
in rows 2 and 3 are processed just the way they were in the previous examples. The 
cross product in row 5 is an upward pointing vector as shown by the fact that the 
third component is negative. To reverse the direction of  the vector so that it points 
into the lower hemisphere, each component is multiplied by –1 in row 6. The direc-
tion cosines for the unit vector parallel to the cross product are calculated in row 8 
by dividing the components in row 6 by the magnitude of  the vector. The trend of  
the pole to the plane is calculated from these direction cosines by using the same 
formula that we used in the mean vector example: 

 =IF(D8>=0, DEGREES(ATAN(E8/D8)), DEGREES(ATAN(E8/D8))+180) 

As before, we haven’t checked for the special case of  cosα = 0. The resulting trend 
of  the pole is a negative number, which translates to an azimuth of  308.35°; we 
don’t bother to change it because we need to add 90° to it, anyway, to get the right-
hand rule strike, which is done in row 10. 
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Figure 2.14 — Spreadsheet for calculating the orientation of  a plane from two 
apparent dips, labeled line 1 and line 2. The strike of  the plane is given using 
right-hand rule format.
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Exercises—Chapter 2 

1. Practice thinking about coordinate system labeling. 
(a) Devise three different right-handed coordinate systems that start with West 

as the positive X1 axis. 
(b) Likewise, determine three different left-handed coordinate systems that start 

with South as the positive X1 axis. 

2. If  you multiply a vector times 3, does the resulting vector have a magnitude 
three times greater than the original vector? Prove your answer. 

3. From the poles to bedding that you calculated for your measurements in exer-
cise 1.4 in Chapter 1, calculate the mean pole vector and its uncertainty (Eqn 
2.12). 

You should recognize the table below; they are the same problems as in Week 1 of  
the course. The table below lists a series of  orientations. Planes are given in az-
imuth format and lines in trend, plunge format. Asterisks show missing values; *** 
is a missing azimuth or bearing, and ** is a missing plunge or dip. Some of  the val-
ues are redundant: for example, once you know the true dip and dip direction, you 
also know the strike and dip. 

4. Solve each of  these problems with a spreadsheet program or Matlab using the 
cross product or dot product as necessary. You will need to convert all of  the 
values to direction cosines, do the calculations, then convert the values back to 
trend and plunge or strike and dip. Remember that the cross product does not 
normally give you a unit vector so you must convert your answer to a unit vec-
tor before you can get its orientation in trend and plunge. 

Datum Strike & Dip of Plane True Dip (T&P) Apparent Dip(s)  
(T&P)

1 050, **, * ***, ** 090, 25

2 ***, **, * ***, ** 159, 34  and  270, 43

3 ***, **, * 010, 48 321, **  and  090, **
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Chapter 3 
Extracting Information from Geological Maps & Folds 

Geologic Maps 
Geologic maps are one of  the most fundamental types of  geologic docu-

ments and yet they are a strange mixture of  data and interpretation; it is often not 
easy to tell one from the other. Published maps are all solid colors and bold, confi-
dent lines; they look like they are representing data. In this Chapter, we will build 
on the visualization that we began in Chapter 1 and the vector methods from 

Chapter 2 to introduce you to some of  the types of  information that you can ex-
tract from a geologic map.	  

Most of  the features that we deal with at a map scale are approximately pla-
nar features — stratigraphic contacts, faults, dikes, etc. — and, more often than 
not, they are not horizontal. At a regional scale, the surface of  the earth where we 
make most of  our observations is pretty planar but, at more detailed scales, topog-
raphy is very irregular. Mapping the outcrop patterns of  these planar features is ba-
sically an exercise in locating the line of  intersection between the planar feature 
and the irregular 3D surface of  the Earth. 
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Three Point Problems 
A geologist cannot always go the the 

field and put a compass on the rock to de-

termine a strike and dip. Even when s/he 
can do so, we frequently want to know the 
orientation of  a planar rock unit at a scale 
larger than the outcrop scale. That is, we 
want to know the average orientation at a 
map scale. Fortunately, our geologic maps 
provide sufficient information to enable the 
structural geologist to determine orientation 
independent of  outcrop and compass. 

The orientation of  a plane can be de-
termined if  we know the positions of  three non-collinear points within the plane. 
Because the surface of  the earth has variable topography, we can commonly find 
three points on a plane at different topographic elevations. Geologic maps com-

MODERN STRUCTURAL PRACTICE 50 R. W. ALLMENDINGER © 2015-20

Some Common Map Symbols

Contact

Fault

Thrust fault, saw teeth on upper plate

Fault, bar and ball on downthrown side

Anticlinal trace of axial surface

synclinal trace of axial surface

Overturned anticline trace of axial 
surface with trend and plunge of hinge

Overturned syncline trace of axial surface

Strike and Dip of Bedding, of overturned 
bedding

Strike and Dip of Cleavage or foliation, 
of joint

Figure 3.1 — The classical three-point problem where a line is draw between two points of  
equal elevation on a planar surface, yielding the strike (left). On the right is the construc-
tion in a vertical plane parallel to the line labeled “1025.5” (feet) on the map for calculating 
the dip using the elevation values (in feet) and map distance.

7600 ft

6800 ft

map distance = 1025.5 ft

Js

δ = tan−1 800 ft

1025.5 ft
⎛
⎝⎜

⎞
⎠⎟ = 38°
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monly depict topography with contour lines and, even if  they don’t, modern digital 
elevation models are available for most of  the earth’s surface and the elevation of  
any point can be determined via the Internet. 

Figure 3.1 shows the classical way of  determining strike and dip from a geo-
logic map with topographic contours. This simple method takes advantage of  the 
fact that a line connecting two points of  equal elevation along a mapped contact of  
a planar feature define the strike of  a plane. The dip can then be calculated from a 
third point at different elevation from a simple geometric construction. Both the 
map distance, and the elevation difference to the third point, perpendicular to the 
strike, can be read directly off  the geologic map. 

A more general method takes advantage of  the vector methods we’ve just 
learned in the previous chapter. It is more flexible because all three points can be at 
different elevations and can be used wherever we have spot elevations but no topo-
graphic contours (e.g., in Google Earth). We use the cross product of  two vectors in 
a plane — just like we did in the previous chapter to determine the true dip from 
two apparent dips — but this time we are not using unit vectors describing orienta-
tions of  two lines in the plane, but are using position vectors whose magnitudes 
are much greater than one (Fig. 3.2). 

A position vector is a line connecting a point in space to the origin of  the co-

ordinate system (P1, P2, and P3 in Fig. 3.2). The coordinates of  the position vector 
are just the scalar components of  the vector projected onto the coordinate system 
axes. In the case of  our geologic map, we could use the UTM coordinates (eastings 
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Figure 3.2 — Three points in a plane can 
be used to calculate the orientation of  a 
plane. The coordinates of  the three points 
are the coordinates of  the three position 
vectors, P1, P2, and P3. To get the vectors 
that lie within the plane, v and u, we use 
vector subtraction as described in the text. 
The pole to the plane is calculated from v 
× u.

N
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and northings) plus elevation to define the position vector in an East-North-Up co-
ordinate system. Or, we could use any other local Cartesian coordinate system. 

To calculate the pole to the plane, we will use the cross product of  two vec-
tors in the plane, v and u. These two vectors can be calculated from the position 
vectors using vector subtraction. The complete sequence of  steps is given, below: 

The first step is to subtract the position vectors to get v and u. Note that at 
this point, we are working in an ENU coordinate system so the subscripts in the fol-
lowing equation correspond to the axes of  our coordinate system: 1=E, 2=N, and 
3=U. 

	 	 (3.1) 

	  

To convert these to a lower hemisphere NED centric coordinate system — which 
we will need in order to calculate our orientations — we switch the order of  the 
first two components of  the vector and multiply the third by –1: 

	 	 (3.2) 

	  

The cross product is defined as: 

	 	 (3.3) 

The cross product gives us the pole to the plane but we need to convert it to a unit 
vector before it can be transformed back into geographic orientations like trend 
and plunge or strike and dip. We start by calculating the magnitude of  cross prod-
uct, smagn: 

	 	 (3.4) 

And now we calculate the unit pole vector, , by dividing each component of  s by 
its magnitude, smagn. 

v = [(P21 − P11) (P22 − P12) (P23 − P13)]
u = [(P31 − P11) (P32 − P12) (P33 − P13)]

v = [(P22 − P12) (P21 − P11) −(P23 − P13)]
u = [(P32 − P12) (P31 − P11) −(P33 − P13)]

v′ × u′ = [(v2u3 − v3u2) (v3u1 − v1u3) (v1u2 − v2u1)] = [s1 s2 s3]

smagn = s2
1 + s2

2 + s2
3

p̂
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	 	 (3.5) 

If  the third component is negative, i.e., p3 < 0, then the unit pole vector we have 
calculated points into the upper hemisphere. To covert to the lower hemisphere in 
this case, multiply each component by –1. 

We’re now ready to convert our unit pole vector back to trend and plunge. 
The plunge is straightforward because it is just the arcsine of  the p3 component of  
the pole to the plane: 

	 	 (3.6) 

p̂ = [p1 p2 p3] = [ s1
smagn

s2
smagn

s3
smagn ]

plunge = sin−1(p3)
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Figure 3.3 — A 
three point calcu-
lation in GMDE. 
This program can 
also calculate the 
uncertainties; 
those shown here 
are given a hori-
zontal and vertical 
uncertainty of  40 
ft.

Figure 3.4 — The spreadsheet to 
do the same calculation as shown 
in Figure 3.3. Note that the switch 
from an ENU to a NED coordinate 
system occurs in row 11.



CHAPTER 3 GEOLOGIC MAPS & FOLDS

As we saw in Chapter 2, the trend is a function of  p2 and p1 and the sign of  p1. If  p1 
≥ 0 then you use the equation on the left, below; otherwise use the equation on the 
right: 

	    or   	 (3.7) 

To get the right-hand rule strike, just add 90° to the trend; the dip is 90°–plunge. 

The program GeolMapDataExtractor (GMDE) can do this calculation for 
you automatically (Fig. 3.3), and the equations we have just seen are exactly how 
the program does it. As a scientist, you are, of  course, not content to trust your pre-
cious data to a canned program, and thus will want to calculate these values your-
self. Figure 3.4 shows you how to set up your spreadsheet using the same values as 
in Figure 3.3. 

Stratigraphic Thickness from Maps 
Stratigraphic thickness is defined as the thickness of  a unit measured per-

pendicular to the upper and lower surfaces of  the unit. For people truly interested 
in stratigraphic sequences, there is still no substitute for going out in the field and 
measuring a stratigraphic section with tape, compass, Jacob staff, or whatever. Mea-
suring section that way is certainly the most accurate way to determine the thick-
ness of  a unit but the process is time-consuming. For the rest of  us, especially when 
drawing cross sections, we are more likely to calculate the thickness of  a strati-
graphic unit from a geologic map, commonly called a map thickness. In this sec-
tion, we will see how to determine the map thickness in the way that geologists have 
for many decades. In the next chapter, we’ll learn how to do the calculation in a 
much more flexible way after learning a new concept. 

To calculate a map thickness, t, using traditional methods (Fig. 3.5), you must 
determine the map distance, h, between the top and bottom of  the unit measured 
in the true dip direction (i.e., perpendicular to strike); the vertical distance, v, be-
tween base and top along the same transect; and the true dip, δ. There are three 
equations and the correct one to use depends on the relationship between the dip 

t rend = tan−1 ( p2

p1 ) t rend = 180∘ + tan−1 ( p2

p1 )
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direction and the slope direction (Fig. 3.5). For cases where the stratigraphic unit 
dips more steeply and in the same direction as the slope, one uses: 

	 	 (3.8a) 

When  the slope and dip direction are the same, but the slope is steeper, the correct 
formula to use is: 

	 	 (3.8b) 

And finally, where the dip and the slope are in opposite directions, the equation is: 

	 	 (3.8c)
 

t = − v cos δ + h sin δ

t = v cos δ − h sin δ

t = v cos δ + h sin δ
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t = v cos(δ) – h sin(δ)

t

t

t

h
v

h

h

v

v

t = v cos(δ) + h sin(δ)

t = –v cos(δ) + h sin(δ)

Figure 3.5 — Cross section illus-
trating the traditional way of  cal-
culating map thickness. In all 
three cases, the cross section is 
perpendicular to the strike of  the 
unit so that the true dip, δ, is used. 
There are three cases (from left to 
right): the unit dips in the same 
direction but less steeply than the 
slope;  the unit dips in the oppo-
site direction from the slope; and, 
the unit dips in the same direction 
as the slope but more steeply.

v

h

s

α
δ

t

α

α = tan
–1

(v/h)
s = h/cos(α)#
t = s sin(α+δ)

Figure 3.6 — The two right triangles 
necessary to solve for the thickness on 
your own. The equations shown in the 
graphic will eventually simplify to 
Equation 3.8c, though it is not neces-
sary to take it that far.
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I highly recommend that, rather than memorizing these equations, you simple de-

rive the equation from the geometry when you need it. Trying to recall which spe-
cial case to use can lead to errors and it is usually faster to derive the correct equa-
tion than to look up and use an equation out of  a book, cookbook style. To work 
out the equations yourself, note that there are two right triangles as shown in Figure 
3.6. You first calculate the slope angle, α, and slope distance, s, and then you use 
those quantities along with the dip to derive the thickness. Similar graphics can be 
devised for the other two special cases. 

The necessity to construct these diagrams in the true dip direction and re-
member the three special cases (Fig. 3.5) is limiting when it come to writing a single 
general equation to accomplish the task of  determining map thickness. In the next 
chapter, we will learn a powerful set of  methods known as coordinate transforma-
tions that will enable, not only a general solution to this problem but to a whole set 
of  interesting problems typically encountered in structural geology. 
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Figure 3.7 — Basic fold terminology illustrated with two folded surfaces. 
The hinge line connects points of  maximum curvature on a surface 
whereas the crest and trough lines connect the topographically highest 
and lowest points, respectively, on the surface. The axial surface is the 
surface that contains all of  the hinge lines on all of  the folded surfaces.
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Analysis of  Folded Rocks 
Folded rocks (Fig. 3.7) are some of  the most aesthetically pleasing of  all geo-

logical structures and are quite important economically as hydrocarbon traps. 
When folded rocks intersect the irregular surface of  the Earth, the resulting out-
crop patterns can be quite complex. On a map, the fold is usually represented by 
the trace of  the axial surface (the intersection between the surface of  the earth and 
the axial surface) or sometimes the crest line. For folds with shallowly dipping axial 
surfaces (i.e., recumbent folds) the trace can be quite complex. 

Cylindrical Folds 

The simplest fold model is that of  a cylindrical fold (Fig. 3.8) in which 
there is a line of  zero curvature, known as the fold axis, and non-zero curvature at 
any point along the fold in a direction perpendicular to the fold axis. the resulting 
structure is completely two dimensional such that a measurement of  bedding orien-
tation in one part of  the fold should be identical to bedding measured in any other 
part of  the fold parallel to the fold axis. If  you were to measure bedding throughout 
a cylindrical fold and plot the poles. They would lie within a single plane known as 
the profile plane (Fig. 3.8). The profile plane is perpendicular to the fold axis and 
provides the “truest” view of  the fold. Any profile plane constructed anywhere 
along the fold will show the same view as long as it is perpendicular to the fold axis. 
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profile plane

Fold axis

poles to bedding
Figure 3.8 — A perfect cylindrical 
fold illustrating the concept of  a 
fold axis (line of  zero curvature 
shown in red) and profile plane. All 
of  the poles to bedding should be 
oriented parallel to the profile 
plane. In the real case, bedding is 
not measured along a single arc, 
but can be measured anywhere on 
the surface and the projected paral-
lel to the fold axis to a common 
plane.
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The cylindrical fold model is highly oversimplified and very few natural folds are 
perfectly cylindrical. Nonetheless, the model provides a quick way of  determining a 
fold axis and it allows us to project a plunging fold geometry to depth. 

Determining the fold axis is simple: as implied in the previous paragraph, we 
measure a number of  bedding orientations around a fold and plot them on a stere-
onet. Two different approaches can be used: in a β-diagram, we plot the great 
circles of  bedding and locate the fold axis where the maximum number of  intersec-
tions occur (Fig. 3.9a). In the π-diagram, the poles to the bedding planes are cal-
culated and a great circle fit to the bedding poles. The pole to the best fit great cir-
cle defines the fold axis (Fig. 3.9b). As you can imagine looking at Figure 3.9a, the 
β-diagram can get messy very quickly with a lot of  bedding measurements. For that 
reason, and because the numerical solution to this problem uses the poles anyway 
as we shall see in a later chapter, most structural geologists prefer the π-diagram. 
Either type of  diagram is easy to use in a stereonet program (look for the “Cylin-
drical best fit” menu option). 

Most folds are not as nicely curved as the idealized folds depicted in Figures 
3.8 and 3.9. Instead, they tend to have mostly planar limbs and a narrow hinge 
zone where the dip changes occur over a narrow area. In this case, the geologist 
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(a) (b)

β
π

Figure 3.9 — Finding a cylindrical fold axis by plotting bedding orientations on 
a stereonet. (a) β-diagram of  great circles representing the strikes and dips of  
bedding and the region of  intersection defines the fold axis. (b) π-diagram of  
poles to bedding. The pole to the best fit great circle through the bedding poles 
defines the fold axis.
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who conscientiously measures bedding orientations at regular intervals is more like-
ly to see two point clusters, corresponding to the two limbs, with a relatively small 
number of  measurements in-between (Fig. 3.10). Furthermore, if  the fold is asym-
metric, then there will be fewer measurements from the shorter limb. In these cases, 
the resulting π-diagram can be used to locate not only the fold axis but also the fold 
axial plane. Where bedding thickness is preserved across the fold, the axial plane 
bisects the angle between the limbs of  the fold and contains the fold axis. This cal-
culation is straightforward for upright folds (Fig. 3.10a); you can see on the stere-
onet that the axial plane plots between the two point clusters. However, overturned 
folds are more problematical because, whereas for the upright limb we plot the 
downward pointing poles, for the overturned limb we are plotting the upward 
pointing poles so they will appear in the lower hemisphere (Fig. 3.10b). In this case 
the axial plane will bisect the large obtuse angle between the two point clusters. 
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Figure 3.10 — Determining the fold axis and axial plane on a stereonet. At the top of  each 
diagram is a profile view of  a bed (in green) with the axial plane in blue. In the stereonet 
views, below, the poles to bedding are shown with green dots, the cylindrical best fit and 
fold axis in red and the axial plane in blue. Dashed lines with arrows show where each 
limb plots on the stereonet. (a) and upright asymmetric fold. The downward pointing 
poles for both limbs are plotted. (b) an overturned asymmetric fold. The poles of  the over-
turned limb are plotted as upward pointing poles.
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Dip Isogons 

Cylindrical folds come in several flavors. A common way to classify them is 
with dip isogons, which are used to describe the geometric relationship of  one 
bedding surface to the next. A dip isogon connects two points on adjacent bedding 
surfaces which both have the same dip relative to the axial plane of  the fold. As 
shown in Figure 3.11, there are three general classes of  folds based on dip isogons. 
Where bedding thicknesses are preserved, Class 1 dip isogons are also known as 
parallel folds (Fig. 3.11a). Class 2 dip isogons result from similar folds (Fig. 
3.11b). Finally, Class 3 dip isogons indicate a fold where the inner surface is less 
curved than the outer surface. We will return to fold geometry and kinematics in 
Chapter 10 because cross section construction relies heavily on choosing an appro-
priate fold model. 

Folds in Map View 

A cylindrical fold is just about the simplest fold form you can imagine and 
yet, when you convolve the form with the topography of  the earth, the resulting 
map pattern can be highly complicated. Even in the absence of  topography, correct 
interpretation of  the fold axis and axial trace can be counterintuitive. Because the 
axial plane is, well, a plane, the trace that the axial plane makes across the land sur-
face is plotted on the map, i.e., the intersection between the plane and the topogra-
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Figure 3.11 — The construction of  dip isogons and the three general classes of  
folds: (a) Class 1 dip isogons where the radius of  curvature of  the lower bedding 
surface is smaller than the upper surface. (b) Class 2 dip isogons where both bed-
ding surfaces have the same curvature; and (c) class 3 dip isogons where the lower 
surface has a larger radius of  curvature than the upper surface.
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phy (Fig. 3.12a). The fold axis is a line that, in general, intersects the surface in a 
point (really a point for each geological surface). Thus, we show the trend and 
plunge of  the fold axis as a small arrow pointing in the direction of  the trend of  the 
axis with a number next to it for the plunge (Fig. 
3.12a). The down-plunge view of  a cylindrical 
fold, which can be approximately achieved by 
tilting the map so that you are looking in the di-
rection of  plunge, provides the most accurate 
perspective on the fold geometry and can help 
make sense of  a seemingly complicated map pat-
tern (Fig. 3.12b). In the next chapter, we will see 
how to calculate down-plunge views of  folds. 

Working out the geometry of  fold axis and 
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There is a spectacular web-based 
resource, Visible Geology, 
where you can create your own 
3D models, look at those created 
by other people or visualize a 
stereonet in 3D: 

http://app.visiblegeology.com

Figure 3.12 — Folds and topography in (a) map view, and (b) down-plunge view. In the map 
view (a), the heavy black lines are index topographic contours and the light gray lines are 
other topo contours; a hill with NW-trending ridge is depicted. The yellow lines are traces of  
fold axial planes with standard symbols for over-turned anticlines and synclines. the block 
diagram in (b) shows the down-plunge view of  the structure — tilted so the viewer is looking 
parallel to the trend and plunge of  the folds — where the true fold geometry is revealed. In 
this view, axial traces are approximately straight lines. In (b) only the index contours are 
shown as discontinuous black lines. Diagrams created with Visible Geology (thanks, 
Rowan!).

(a) (b)

http://app.visiblegeology.com
http://app.visiblegeology.com/
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axial plane is not always straight forward, even in the absence of  significant topog-
raphy. A couple of  tricks will help you to interpret folds more quickly. Most impor-
tantly, as shown in Figure 3.10, the fold axis is a line contained within the axial 
plane, but it can have any rake within that plane. Thus, for some types of  folds 
known as reclined folds, the trend of  the fold axis can actually be as much as 90° to 
the strike of  the axial plane. If  we know the strike of  the axial plane and the trend 
and plunge of  the fold axis, we can determine the dip of  the axial plane. Alterna-
tively, by using the trace of  the axial plane in down-plunge view and the trend and 
plunge of  the axis from a π-diagram, we can calculate the orientation of  the axial 
plane using the cross product or on a stereonet. 

The other “trick” is equally useful, enabling rapid determination of  the 
trend and plunge of  the fold axis: the strike of  any vertical bedding must be 
parallel to the fold axis trend and the dip of  any bedding that strikes 
perpendicular to the fold axis must be equal to the plunge of  the fold 
axis. Thus, if  you find bedding dipping 90° in one part of  an area that has experi-
enced one episode of  cylindrical folding, you know that the trend of  the folds is 
parallel to the strike of  that bed! 

Structural Contour Maps 
Just about any value can be contoured to 

show its spatial variation and structure data are no 
exception. In a structural contour map, one con-
tours lines of  equal elevation on a surface of  inter-
est. Surfaces can be smoothly varying or they can be 
disrupted by faults. Automatic contouring algo-
rithms can do a good job where the elevations are 
smoothly varying but tend to have trouble where 
contours terminate abruptly against a fault. Fur-
thermore, the geologist has a better idea of  what de-
formed geological surfaces actually look like so is in 
a better position to draw realistic contours, though 
one must always be aware of  unintended bias. 
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Figure 3.12 — Contouring via 
linear interpolation along the 
sides of  a triangle with apices 
of  know elevation.
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A geologist doing a first pass at contouring a surface would operate very 
much as a computer program does: s/he would construct a mesh of  triangles — 
such a mesh is frequently accomplished using Delaunay triangulation — with 
apices at the points of  known elevation and would then linearly interpolate be-
tween the points (Fig. 3.12). This sort of  contouring is tedious to do by hand but 
easy to implement in a computer program. 

A significant difference between contours of  the topographic surface and a 
geologic surface of  interest is that the surface of  the Earth is continuous whereas 
the geologic surface can have gaps and overlaps across faults. A normal fault will 
produce a gap (Fig. 3.13a) and a thrust fault will produce an overlap (Fig. 3.13b). 
Folded surfaces that are also faulted yield the most complex patterns (Fig. 3.13c). 
Clearly, a good structure contour map, except in the simplest case of  an inclined 
planar surface with constant strike and dip, requires extensive subsurface data to 
construct. Such data may be available where there has been extensive hydrocarbon 
industry exploration. 
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Figure 3.13 — Examples of  structure contour maps. (a) A normal fault produces a 
gap, (b) thrust or reverse fault an overlap, and (c) a cylindrically folded surface cut by 
a thrust fault striking perpendicular to the fold axis.
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Exercises—Chapter 3 
These exercises and those of  the next Chapter will rely heavily on the program 
GeolMapDataExtractor (GMDE) and a digital copy of  the Poker Peak geologic 
map from the US Geological Survey (Albee and Cullens, 1975). GMDE, in either 
Macintosh or Windows version can be downloaded from: 

 http://www.geo.cornell.edu/geology/faculty/RWA/programs/strikedipthickness.html 

and the Poker Peak Quadrangle map can be downloaded from the class Web site. 
GMDE will allow you to make quick accurate measurements on the map. Note 
that you will need an Internet connection for the program to get elevations auto-
matically. For Exercises 1 and 2, you will also need a copy of  Google Earth, which 
you can download for free from: 

 http://www.google.com/earth/download/ge/agree.html 

1. Open the Poker Peak Quad in GMDE and make sure it is georeferenced (it 
should automatically be unless you have separated the .jpg file of  the map from 
the .txt file of  the same name (the .txt file contains the georeferencing informa-
tion.) Locate the part of  the map shown to the right. Notice that a fault is 
shown offsetting the stratigraphic 
units. 
(a)  Across the entire segment of  the map 

shown, digitize the following con-
tacts: base of  Kp, top of  Kp, top 
of  Kb, top of  Kd. 

(b) Save your contacts as a .kml file 
(File>Export KML>contacts), 
and then open the .kml file in 
Google Earth. 

(c) Kp and Kd are two very light 
gray to nearly white limestone 
units. Trace these white units on 
the Google Earth image from 
the northern end of  your digi-
tizing to the south. 

(d) Evaluate the mapping job and 
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the evidence for a fault, based on the agreement or lack of  agreement of  
your digitized contacts with the units that you see in Google Earth. It will 
probably help to tilt and pan the Google Earth view to evaluate different 
perspectives. Turn in a paragraph with your assessment of  the mapping. 

2. With the Poker Peak Quad loaded into 
GMDE, digitize about 60 strikes and 
dips around the Big Elk Anticline, the 
area outlined in the red polygon to the 
right. 
(a) In GMDE, select 

Settings>Mode>Strike & Dip Only. 
Each time you want to measure a 
strike and dip, select 
Operations>Drag Strike Line or se-
lect ⌘D from the keyboard (easier). 
To drag a strike line, click at the in-
tersection of  the strike line and dip 
tick mark and then drag the mouse in 
the direction of  the right-hand rule 
strike (you can correct it if  you drag 
in the wrong direction with the pop-
up menu). You will have to type the 
dip value in by hand. Once you are 
happy with the strike and dip, press the “Record Strike & Dip” Button. The 
program should draw a new strike and dip symbol over the one that you just 
measured. 

(b) When you have measured and recorded all of  the strikes and dips in the out-
lined area, save your data. You should save it in three ways:  
(i) first, select File>Save Data>Thickness/Orientation Data. This will allow 

you to read your data back in to GMDE easily which will be useful in 
next week’s lab.  

(ii) Next select File>Export Strikes & Dips. This file can be easily read into 
Stereonet. 

(iii) Finally, select File>Export KML>Strikes & Dips to make a file for visual-
ization in Google Earth. In the dialog box that appears, just click Okay 
which will use the default values. 
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(c) Open the KML file in Google Earth. The strikes and dip symbols are ren-
dered in three dimensions so you can clearly see the relationship between 
strike and dip and the actual stratification. Be sure that you have topography 
turned on in Google Earth and tilt and pan to get a good feeling for the 3D 
nature of  the geology. In Google Earth, save an image of  the screen 
(File>Save image) which you think shows especially well the rela-
tionship between the measured strike and dip and the geology 
and turn it in with a sentence about why you liked it. 

(d) Open the second file in Stereonet. Calculate the poles to the plane, make a 
π-diagram, and determine the fold axis of  the Big Elk Anticline. Turn in 
your plot with the fold axis clearly annotated. 

3. In GMDE with the Poker Peak 
Quad loaded, find the area in the 
northeast corner of  the map shown 
to the right. 
(a) Select Settings>Mode>Strike & 

Dip Only and uncheck the 
check box that says “user en-
tered strike and dip”. Use 
GMDE to find the East, North, 
and Up coordinates of  three 
points on the base of  the purple 
TRa where it crosses the ridge 
with the number “14” on it. To 
do so click the “click” button 
next to one row, then click on the 
map exactly where you want to place the point. Repeat for the other two 
points. If  you have an Internet connection enabled, the program will get the 
elevation for you automatically; otherwise, you will have to type in the eleva-
tion coordinate by hand. 

(b) Copy the ENU coordinates of  the three points you have defined into a 
spreadsheet and calculate the strike and dip of  the unit in the spreadsheet 
using vector subtraction and the cross product.  You can compare your an-
swer to the correct answer that GMDE calculates automatically. 

(c) Compare your calculated value to the strike and dip symbol that the geolo-
gist measured on the ridge for the base of  TRa and discuss the uncertainties 
and reasons for the difference in two values, if  any. Once you record your 
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strike and dip, you can see it’s location in a satellite image by choosing Da-
tum Details from the Window menu. This may help you in your discussion. 
Turn in both the spreadsheet with the calculation of  the strike 
and dip and the your comparison with the mapped value and 
your discussion. 

4. GMDE allows you to make accurate distance measurements: just click and drag 
the mouse from the top (or base) of  the unit in the direction of  the true dip to 
the base (or top) of  the unit. The distance and azimuth of  the line you drag is 
shown in the box at the lower left corner of  the map view. Be sure to read the 
distance before releasing the mouse! You can read the elevations off  of  the topo 
contours on the map or, if  you have an Internet connection, hold down the op-
tion key while you click the mouse at the point for which you want the eleva-
tion.  
(a) On the same ridge that you used for problem 3, calculate the thickness of  

TRa using the appropriate Equation 3.8. Do the calculation for both the ge-
ologist measured orientation and the orientation that you determined from 
the three-point problem in Exercise 3. 

(b) Make a drawing  and derive a set of  equations for the two right triangles 
that you would use to get a the answer in part (a). You don’t have to derive 
Equation 3.8 but the equations that you do get have to give you the same 
answer as Eqn. 3.8! 

5. On the next page is a map showing a number of  borings that were made to de-
termine the elevation of  the Jurassic Twin Creek Limestone in the subsurface 
around the nose of  the Big Elk anticline. Contour these elevations by hand us-
ing a contour interval of  500 ft and describe the resulting surface. You do not 
need to do a formal linear interpolation between adjacent points. 
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Chapter 4 
Transformations 

Introduction 
Many times in geology, as in other disciplines, the problem we are interested 

in solving is simpler when viewed from a different perspective. Anyone who plays 
computer games or flight simulators knows this to be true. So far, we have been 
dealing with geographic-centric coordinate systems — either NED or ENU – be-
cause we measure our world with respect to geographic coordinates. But there is a 

whole class of  problems that benefit from a change in coordinate system or trans-
formation. In the last chapter, we noted that the profile view of  a plunging fold is 
the most accurate representation of  the structure. The profile view is defined by a 
different coordinate system — the fold coordinate system — rather than the geo-
graphic view. In this Chapter, we will learn how to switch back and forth between 
these two views and in the process begin to lay the foundation for understanding 
entities more complicated than geometry such as stress and strain. Before getting to 
interesting geological problems, however, we’ll need to develop the simple mathe-
matical foundation of  transformations. 
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Transformations of  Coordinates and Vectors 

Coordinate Transformations 

At the simplest level, a transformation involves a change in orientation of  the 
coordinate system. Like many things, we will visualize this first in two dimensions 
(Fig. 4.1) and then in three dimensions (Fig. 4.2). In the text that follows, we will al-
ways refer to the new coordinate axes as the primed coordinate system, X′, and the 
old coordinate system as the unprimed system, X. To define the rotation of  a coor-
dinate system in two dimensions, there are four angles between the two new coor-
dinate axes and the two old axes. One needs to be very careful systematic about naming these 
angles: The first subscript refers to the new coordinate axis and the second subscript 
to the old coordinate axis. For example, θ21 is the angle between the X2′ axis and 
the X1 axis (Fig. 4.1a). After the last few chapters, it should come as no surprise that 
we will typically be using the direction cosines rather than the angles themselves 
(Fig. 4.1b). The subscript convention is exactly the same and the relations between 
the angles and their direction cosines are: 

	 	 (4.1) a11 = cos θ11; a12 = cos θ12; a21 = cos θ21; a22 = cos θ22

MODERN STRUCTURAL PRACTICE 70 R. W. ALLMENDINGER © 2015-20

X1

X2

X′1

X′2

θ12

θ11

θ22

θ21

X1

X2

X′1

X′2

a11

a12

a22

a21

î
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Figure 4.1 — A two-dimensional rotation of  a coordinate system between an old, 
unprimed coordinate system in black and a new primed coordinate system in red. 
(a) The rotation defined by four angles, and (b) defined by four direction cosines 
which are the projections of  the base vectors of  the new coordinate system on the 
axes of  the old system. In both cases, the first subscript (in red) identifies the new 
axis and the second subscript (in black) the old axis
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The extension to three dimensions is quite straightforward (Fig. 4.2). Because 
we now have three coordinate axes in the new system and three in the old system, 
there will be nine angles and nine direction cosines. This 3×3 table, or array, of  di-
rection cosines is known as the transformation matrix: 

	 	 (4.2) 

We will be using the shorthand aij a lot in the following sections because it is much 
more compact than writing out those matrices all the time. Just recall that i and j 
can each have values ranging between 1 and 3. 

As you no doubt notice in the case of  the 2D transformation, not all of  the 
angles, or direction cosines, are independent. In that case, only one angle is inde-
pendent and the rest can be calculated from it. In the 3D case, only three angles are 
independent and the rest can be calculated from those three. Matrix a is technically 
known as an orthogonal matrix and the equations that relate the direction 
cosines are known as the orthogonality relations: 

aij =
a11 a12 a13
a21 a22 a23
a31 a32 a33

=
cos θ11 cos θ12 cos θ13

cos θ21 cos θ22 cos θ23

cos θ31 cos θ32 cos θ33
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Figure 4.2 — Coordinate transformation in three dimensions: (a) the new axes 
(primed) in red and the old in black. As before the first subscript refers to the new 
axis and the second to the old axis. (b) The array of  directions cosines: each row 
refers to a new axis and each column to an old axis.
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	    and   	 (4.3) 

While we won’t bother to do so in detail here, both of  these sets of  equations are 
easy to prove: the left equations come from the fact that the base vectors of  the new 
coordinate system have magnitudes of  1, and the right hand equations are due to 
the fact that, because the base vectors are perpendicular to each other, the dot 
product of  each of  the base vectors with the other is zero. 

Transformation of  Vectors 

The transformation matrix by itself  is not very useful. Its power comes from 
the fact that, once we know the transformation matrix and the components of  a 
vector in one coordinate system, we can immediately calculate the components of  
the vector in the other coordinate system. Figure 4.3 shows how this works in two 
dimensions to calculate the  component of  the vector in the new coordinate sys-
tem as a function of  the old components v1 and v2. In terms of  direction cosines we 
could write the equation as: 

	  

a2
11 + a2

12 + a2
13 = 1

a 2
21 + a 2

22 + a 2
23 = 1

a 2
31 + a 2

32 + a 2
33 = 1

a21a31 + a22a32 + a23a33 = 0
a31a11 + a32a12 + a33a13 = 0
a11a21 + a12a22 + a13a23 = 0

v′ 1

v′ 1 = a11v1 + a12v2
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Figure 4.3 — the transformation of  a vector. (a) shows the components of  vector v in the 
old (black, unprimed) and new (red, primed) coordinate systems. (b) the graphical con-
struction to calculate the value of  v′1 in terms of  the old coordinates. The blue and yellow 
highlighted triangles are used to trigonometrically calculate v′1 in terms of  v1 and v2.
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Perhaps the most important thing to notice is that, although the coordinate systems 
have changed, and therefore the values of  the components of  the vector in the two 
coordinate systems are different, the fundamental nature of  the vector itself  has not 
changed at all. This seems trivially obvious but it is exactly this property that de-
termines whether or not something is a tensor property! Yes, a vector is sometimes 
referred to as a first order tensor. More on that in later chapters. 

In three dimensions, there are three equations that describe the components 
of  the vector in the new system as a function of  the old components: 

	 	 (4.4) 

And, there are another three equations that give the components of  the vector in 
the old coordinate system as a function of  the new coordinates: 

	 	 (4.5) 

These equations consist of  nothing more than multiplications and additions 
done in an extremely systematic way. If  you look at Equations (4.4), you can see 
that the order in which the a terms occur is that same as in the matrix in Equation 
(4.2). In each equation, you can see that the subscript of  the v terms varies from 1 
to 2 to 3; In fact, the subscript of  the v term in each 
equation matches the second subscript of  the a term 
that multiplies it. In Equation (4.5), you’ll notice that 
the subscripts of  a appear “flipped” relative to the a 
subscripts in (4.4). In technical terms, the matrix a has 
been transposed. The reason for the systematic vari-
ation in subscripts is because Equations (4.4) and (4.5) 
represent matrix multiplications.  

v′ 1 = a11v1 + a12v2 + a13v3

v′ 2 = a21v1 + a22v2 + a23v3

v′ 3 = a31v1 + a32v2 + a33v3

v1 = a11v′ 1 + a21v′ 2 + a31v′ 3
v2 = a12v′ 1 + a22v′ 2 + a32v′ 3
v3 = a13v′ 1 + a23v′ 2 + a33v′ 3
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Figure 4.4 — The transformation from ENU (a map coordi-
nate system) to NED (structural geology coordinate system).

X3 = U

X′1 = N

X′2 = E

X′3 = D

X2 = N

X1 = E
180°
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A Simple Coordinate Transformation 

There is a coordinate transformation that we already know how to do but, 
nonetheless it is illustrative to see that it works as expected: the transformation from 
an ENU to a NED coordinate system. It is simple because all the angles involved 
are 0, 90, or 180° but important because it is a transformation that we do frequent-
ly. The geometry is shown in Figure 4.4. You can see that, for example θ11 = 90°, 
θ12 = 0°, and θ13 = 90°. Writing it out in the form of  the matrix, we have: 

	  

This simplifies to: 

	 	 (4.6) 

When we use this transformation matrix in Equation 4.4, we get: 

	 	 (4.7) 

Structural Geology Applications of  Transformations 
The equations (4.4) and (4.5) give us some real power to solve interesting 

problems in structural geology. In all of  these problems, the key is determining 
what the transformation matrix, a, looks like and that is where we will spend most 
of  our time, below. As a general rule, the components of  the transformation 
matrix are just equal to the direction cosines of  the new axes in the old 
coordinate system. Thus, we will be seeing combinations of  the equations in 
Table 2.1 a lot. Most importantly, though, recall that the math required is nothing 
more than multiplications and additions done in a very systematic way. 

Stratigraphic Map Thicknesses 

We start with a problem first introduced in the previous chapter: determina-
tion of  the thickness of  a geological unit from map data. The general method in-

aij =
cos 90 cos 0 cos 90
cos 0 cos 90 cos 90
cos 90 cos 90 cos 180

aij = (
0 1 0
1 0 0
0 0 −1)

v′ 1 = v2; v′ 2 = v1; v′ 3 = −v3
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troduced here (Allmendinger and Judge, 2013), like all methods to determine thick-
ness assumes that the top and bottom surfaces of  the bed are planar and parallel. 
Our basic approach will be a transformation into the bedding coordinate system 
where the strike is the first axis, the dip the second axis and the pole the third axis, 
an SDP system (Fig. 4.5). In this coordinate system, the thickness is just the differ-
ence between the X′′3 coordinate of  a point on the top of  the bed and X′′3 coordi-
nate of  any point on the base (not necessarily in the dip direction).  

A slight wrinkle of  this method is that the position vector of  the points on the 
top and base of  the bed are given in an ENU coordinate system but the direction 
cosines of  the strike, the dip direction and the pole will be in a NED coordinate sys-
tem (Fig. 4.5). Let’s assume that the point (i.e., position vector) on the top has coor-
dinates [tE, tN, tU] and the point on the base has coordinates [bE, bN, bU] in the 
ENU system. Our first step will be to transform that into the coordinates in a NED 
system as we have seen before. In the NED system the two vectors are: 

	    and    

Now we can use the direction cosines of  the strike, dip and pole to construct the 
transformation matrix. The strike is our X′′1 axis so the first row of  the transforma-
tion matrix will be its direction cosines in the NED system: 

	  

t′ = [tN tE −tU] b′ = [bN bE −bU]

(cos(str ike)cos(0) sin(str ike)cos(0) sin(0))
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Figure 4.5 — Diagram showing the co-
ordinate transformation from an ENU 
to Strike-Dip-Pole (SDP) coordinate sys-
tem. The thickness can be calculated 
from any point on the top and any point 
on the base of  the bed by subtracting 
there X′3 coordinates.

X2, X′1 (N)
X3 (U)

X1, X′2 (E)

X′3 (D) X′′2 (Dip)

X′′1 (Strike)

X′′3 
(Pole)
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Recall that the strike is a horizontal line with a plunge of  0°. The second row of  
the transformation matrix are just the direction cosines of  the dip and dip direction 
(X′′2) in an NED system (assuming strike in right hand rule format): 

	  

Finally, the pole is the third axis of  our new coordinate system, X′′3 and its direc-
tion cosines in the NED system are: 

	  

Assembling all three rows of  transformation matrix and making the necessary 
trigonometric simplifications, we get: 

	 	 (4.8) 

Now we can transform the top position vector, t′, in the NED coordinate sys-
tem into the new bedding system (the bottom vector will look identical): 

	 (4.9) 

The thickness is  so only the third line above matters and we can write the 
thickness as: 

	 (4.10) 

(cos(str ike + 90)cos(dip) sin(str ike + 90)cos(dip) sin(dip))

(cos(str ike − 90)cos(90 − dip) sin(str ike − 90)cos(90 − dip) sin(90 − dip))

aij =

cos (str ike) sin (str ike) 0

−sin (str ike) cos (dip) cos (str ike) cos (dip) sin (dip)
sin (str ike) sin (dip) −cos (str ike) sin (dip) cos (dip)

t′ ′ 1 = a11t′ 1 + a12t′ 2 + a13t′ 3
= cos (st r ik e)tN + sin (st r ik e)tE + 0 (−tu)

t′ ′ 2 = a21t′ 1 + a22t′ 2 + a23t′ 3

= [−sin (st r ik e) cos (dip)] tN + [cos (st r ik e) cos (dip)] tE + [sin (dip)] (−tu)
t′ ′ 3 = a31t′ 1 + a32t′ 2 + a33t′ 3

= [sin (st r ik e) sin (dip)] tN + [−cos (st r ik e) sin (dip)] tE + [cos (dip)] (−tu)

′′t3 − ′′b3

t′ ′ 3 − b′ ′ 3 = [sin (st r ik e) sin (dip)] (tN − bN) − [cos (st r ik e) sin (dip)] (tE − bE)+

[cos (dip)] (bU − tU)
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The order of  t and b in the third term are reversed because it is really: [–tu – (–bu)]. 
To reemphasize, strike and dip must be in right hand rule format for this equation 
to work. 

The spreadsheet solution to this problem is shown in Figure 4.6. The 3×3 
block of  numbers labeled “Transformation Matrix” are calculated using Equation 
4.8. The actual transformation from NED to SDP coordinate system occurs in 
rows 14 and 15; you can see the formula for cell D15 expanded and color coded to 
show which values are being used. In those formulae, we use absolute cell refer-
ences (i.e., the “$” signs) to the transformation matrix so their cell positions will not 
change when we copied the formulae from row 14 to row 15. Finally, note that be-
cause NED is positive downwards, we actually subtract the top from the base! 

Down-Plunge Projection  

As we saw in the previous Chapter, cylindrical folds have a profile plane that 
is perpendicular to the fold axis (Fig. 3.8). The profile plane contains the least dis-
torted view of  a cylindrically folded surface, known as a down-plunge projec-
tion. Constructing down plunge projections by hand usually involves orthographic 
projection and can be particularly tedious, so much so that most structural geology 
lab manuals omit the 3D version entirely and instead only teach students how to do 
a two dimensional construction that assumes that the surface of  the earth is flat! 
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Figure 4.6 — The spreadsheet for 
calculating stratigraphic thick-
ness using the Equations 4.6 and 
4.7.
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However, a full three dimensional down-plunge projection can be calculated using 
the transformation methods in this chapter. 

The two coordinate systems are shown in Figure 4.7: the first is our usual ge-
ographic coordinate system East-North-Up. It makes sense to use a map coordinate 
system because the contacts that describe the bedding surfaces to be projected will 
be digitized from a geologic map. The second coordinate system is defined by the 
fold axis . As before, if  we want to use the trick that the direction cosines of  the 2

transformation matrix are just the direction cosines of  the axes in NED given by 
Table 2.1, we first have to transform the position vectors of  the digitized bed from 
ENU to NED, like we did in the previous example. Let’s assume that a digitized 
point along a bedding surface has coordinates x1, x2, x3 in an ENU coordinate sys-
tem. Our first transformation using Equation (4.7) gives us: 

	 ;     ;     	 (4.11) 

The second transformation matrix will be based on the trend and plunge of  the 
fold axis (X′′2), TFA and PFA, respectively. As you can work out from Figure 4.7, 
the trend and plunge of  X′′1 will be (TFA+90), 0 and the trend and plunge of  X′′3 
will be TFA, PFA-90. The plunge of  X′′3 will be negative because the arrow points 

x′ 1 = x2 x′ 2 = x1 x′ 3 = −x3

 The derivation that we do here is different from that in Allmendinger et al. (2012), including the numbering of  the 2

axes. In Allmendinger et al., they derive a single transformation from ENU directly to the fold coordinate system. 
Here we use an easier to follow two step transformation in which the fold axis is the X′′2 axis, not the X′3 axis. 
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Figure 4.7 — The two coor-
dinate systems in the down 
plunge projection. See text 
for discussion.
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upwards in a NED coordinate system. Now, we can use the equations in Table 2.1 
to construct the second transformation matrix from NED to the fold coordinate 
system. Without bothering with the intermediate steps, it is: 

	 	 	

	  

	 	 (4.12) 

The second transformation is then 

	 	 (4.13a) 

	 	 (4.13b) 

Where  is the coordinate of  a point on a digitized bed in fold coordinates,  is 

the coordinate of  the same point in NED coordinate system which was trans-
formed from its original ENU coordinates via Equation. 4.11. 

To implement these equations, you will first need to digitize some contacts, 
specifying an East coordinate, a North coordinate, and an elevation for each vertex 
of  the polygon drawn along the contact. A program like GMDE makes the process 
relatively painless and will also show you what your calculated projection should 
look like. Then, you will import the coordinates of  your digitized polygon along the 
bedding contact into a spreadsheet program (Fig. 4.8). The fold axis — presumably 
determined by constructing a π-diagram (Fig. 3.9b) — must also be entered. The 
first transformation (Fig. 4.8) follows Equation 4.11; the transformation matrix 
comes from Equation 4.12 and the actual transformation from Equation 4.13. No-
tice in the spreadsheet in Figure 4.8 that the equations implementing the second 
transformation should have absolute cell references to the transformation matrix. 

bij =
cos (TFA + 90) cos (0) sin (TFA + 90) cos (0) sin (0)
cos (TFA) cos (PFA) sin (TFA) cos (PFA) sin (PFA)

cos (TFA) cos (PFA − 90) sin (TFA) cos (PFA − 90) sin (PFA − 90)

bij =
−sin (TFA) cos (TFA) 0

cos (TFA) cos (PFA) sin (TFA) cos (PFA) sin (PFA)
cos (TFA) sin (PFA) sin (TFA) sin (PFA) −cos (PFA)

x′ ′ i = bijx′ j

x′ ′ 1 = b11x′ 1 + b12x′ 2 + b13x′ 3

x′ ′ 2 = b21x′ 1 + b22x′ 2 + b23x′ 3

x′ ′ 3 = b31x′ 1 + b32x′ 2 + b33x′ 3

′′xi ′x j
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To see your down-plunge projection in the spreadsheet, select the columns G 
and I, representing coordinates along the X′′1 and X′′3 axes respectively, and choose 
scatter plot (you can do non-contiguous selections in most programs using the 
command key rather than the shift key). The plot will probably be distorted be-
cause spreadsheet programs to do not try to scale the two axes equally. Thus you 
will have to, either by hand or using the chart dialog box, adjust the scales so that 
they are equal. 

Rotations 

Rotations are a way of  life in structural geology because we frequently want 
to restore some feature to its initial, pre-deformation orientation: What direction 
did the current flow prior to tilting of  bedding? How can well tell whether magnet-
ic vectors were imprinted on the rock before folding or after? What orientation was 
the dike when it was intruded? These questions have been answered for decades by 
using a stereonet with paper and pencil. Rotations done in this manner are straight-
forward when the rotation is about a horizontal axis (e.g., returning dipping bed-
ding to horizontal) but rotations about inclined axes require breaking the rotation 
up into two or more separate rotations. Computer stereonets, of  course, do rota-
tions completely differently and thus do not suffer any of  the limitations of  paper 
stereonets. Let’s see how computers accomplish this task. 
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Figure 4.8 — Part of  the spreadsheet for doing a down-plunge projection. The first 
transformation switches from ENU to NED, and the second changes from NED to 
the fold coordinate system defined by the fold axis.
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Given its appearance in this Chapter, it should come as no surprise that most 
computer programs use coordinate transformations for rotations. The type of  
transformation, though, is a bit more complicated to derive than in previous exam-
ples because the rotation axis does not coincide with either the new or the old co-
ordinate system. The old coordinates, of  course, are our NED coordinate system, 
but we do not know a priori what the orientations of  the new axes will be; we have 
to calculate them. 

Figure 4.9 shows the angular relations involved. The stereonet grid has been 
repositioned to be centered on the rotation axis. All points will move parallel to the 
small circles in this projection. The givens are the orientation of  the rotation axis, 
specified in terms of  the angles α, β, and γ that it makes with North, East, and 
Down, respectively, and the magnitude of  the rotation, ω. As shown (Fig. 4.9), the 
amount of  rotation and the angle between new and old axes are different things. 
From those values, the direction cosines of  the transformation matrix must be 
calculated. Here, we’ll just give you the matrix; the derivations are not particularly 
difficult but are tedious to follow. You can find the derivation in terms of  spherical 
trigonometry in Allmendinger et al. (2012) and in terms of  matrix multiplications 
in any linear algebra textbook. 
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Figure 4.9 — Rotation as a coordinate 
transformation. The old axes are NED 
and the new coordinate axes are shown 
in red. The rotation axis orientation is 
defined by the angles that it makes with 
the NED axes; the magnitude of  rotation 
is ω. Note that the rotation angles are 
defined along small circles centered on 
the rotation axis whereas the angles be-
tween axes such as θ22 are measured 
along great circles.
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The following equations (4.14) comprise the transformation matrix for a 
general rotations: 

	 	 (4.14) 

These equations are put into practice in the spreadsheet in Figure 4.10: (a) enter 
the trend and plunge of  the lines to be rotated as well as the rotation axis and the 
magnitude of  the rotation (columns A and B). (b) Calculate the direction cosines of  
those lines and the rotation axis (columns C, D, E). (c) Calculate the transformation 
matrix (F14-H16) using the Equations (4.14), above. Don’t forget that you have al-
ready calculated the cosα, cosβ, cosγ for the rotation axis so you do not need to do 
that again! Although it is not necessary, a quick check on your equations is to calcu-
late the magnitude of  the vector in each row of  the transformation matrix; as 

a11 = cos ω + cos2 α (1 − cos ω)
a12 = − cos γ sin ω + cos α cos β (1 − cos ω)
a13 = cos β sin ω + cos α cos γ (1 − cos ω)
a21 = cos γ sin ω + cos β cos α (1 − cos ω)
a22 = cos ω + cos2 β (1 − cos ω)
a23 = − cos α sin ω + cos β cos γ (1 − cos ω)
a31 = − cos β sin ω + cos γ cos α (1 − cos ω)
a32 = cos α sin ω + cos γ cos β (1 − cos ω)
a33 = cos ω + cos2 γ (1 − cos ω)
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Figure 4.10 — Spreadsheet to rotate the eight lines in rows 3-10. See Text for discussion
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shown in I14-I16, they should all be equal to 1. (d) Transform the direction cosines 
in columns C-E to the rotated direction cosines in columns F-H using the trans-
formation matrix. As you can see from the exposed formula, be sure to use absolute 
cell references. (e) Finally, convert your rotated direction cosines back to trend and 
plunge (columns I, J) using Equations (2.11). 

Summary 
This chapter covers a hugely important technique — transformations — and 

the illustrations here only scratch the surface of  what you can do with this ap-
proach. The theory is easy to grasp in two dimensions and the extension to three 
dimensions is straightforward. One only needs to be very systematic in making sure 
that the subscripts are in the correct order and apply to the axes we think they ap-
ply to. Most importantly, the subscripts always apply to a specific coordinate axis. 
Understanding this will help us a lot when we get to stress and strain. Finally, al-
though the approach is very systematic and logical, the math is very simple: just 
multiplication and additions, something that you have know how to do since middle 
school! 
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Exercises—Chapter 4 
Once again, these exercises rely heavily on the program GeolMapDataExtractor 
(GMDE) and a digital copy of  the Poker Peak geologic map from the US Geologi-
cal Survey (Albee and Cullens, 1975). GMDE, in either Macintosh or Windows 
version can be downloaded from: 

 http://www.geo.cornell.edu/geology/faculty/RWA/programs/strikedipthickness.html 

And the Poker Peak Quadrangle map can be downloaded from the web site. 
GMDE will allow you to make quick accurate measurements on the map. Note 
that you will need an Internet connection for the program to get elevations auto-
matically. For Exercises 1 and 2,you will also need a copy of  Google Earth, which 
you can download for free from: 

 http://www.google.com/earth/download/ge/agree.html 

1. Open the Poker Peak Quad in GMDE and 
make sure it is georeferenced (it should au-
tomatically be unless you have separated the 
.jpg file of  the map from the .txt file of  the 
same name (the .txt file contains the georef-
erencing information.) Locate the part of  
the map shown to the right. Notice that a 
fault is shown offsetting the stratigraphic 
units. 
(a) Digitize the tops of  the following con-

tacts all the way around the fold: Jn, Jp, 
Js, Ke, Kp, Kb, Kd.  

(b) Save the contacts as a text file (File>Save 
Data>Digitized Contacts), and then Save 
the contacts as .kml file (File>Export 
KML>Contacts). 

(c) Open the file you just saved in a spread-
sheet program. Use the coordinate and 
vector transformation that we derived in class, and the fold axis that you de-
termined last week, to produce a down-plunge projection of  the Big Elk an-
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ticline. Beside to adjust the scales of  the two axes so they are approximately 
the same. 

(d) Open the KML file in Google Earth and rotate the image around so that 
you see the same down plunge projection that you produced in your spread-
sheet. Capture a screen shot in 
Google Earth and turn in with 
your spreadsheet. 

2. Back to the NE corner of  the Poker 
Peak Quad: find, again the ridge 
shown to the right in GMDE. In 
this question, we will determine the 
thickness of  the following units us-
ing a coordinate transformation: 
TRa, JTRn, and Jt. 
(a) In GMDE, select 

Settings>Mode>Strike Dip 
Thickness. GMDE can and will 
calculate the thickness for you 
(which you can use as a check on your calculations), but 
for this problem, we are mostly interested in using the 
program to get accurate coordinates for two points, one 
on the top surface and one on the bottom surface. We 
will just use the strike and dip information measured by 
the field geologist for this problem. 

(b) Once your have determined the coordinates of  the 
points at the top and bottom of  each surface, in a 
spreadsheet program, calculate the thickness of  each 
unit using a coordinate transformation from geograph-
ic coordinates to bedding plane coordinates. 

3. Using the transformation matrix for rotations about an 
arbitrary axis (equations 4.14) rotate the data to the right 
by a magnitude of  56° about an axis that has a trend and 
plunge of  113, 29. You should do the rotation in a spread-
sheet. You may check your answer in a Stereonet Pro-
gram. 
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Trend Plunge
113 73
76 78
175 71
229 62
75 62
111 77
78 85
316 53
25 78
21 57
81 77
80 58
58 62
40 57
42 71
229 23
110 72
278 61
264 78
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Chapter 5 
The Orientation and Stress Tensors 

Introduction 
The topic of  tensors typically produces significant anxiety for students of  

structural geology. That is due, at least in part, to the fact that the term is studiously 
avoided until it is sprung on the student when introducing the topic of  stress, thus 
conflating two difficult to grasp concepts. In our case, the previous chapters have 
already introduced the concept of  vectors as a type of  first order tensor so the 

fundamental definition — an entity that can be transformed from one coordinate 
system to another, changing its components in predictable ways such that its fun-
damental nature doesn’t change — is already understood on an intuitive level. In 
the case of  our vector, it has the same magnitude and orientation on the page re-
gardless of  the orientation of  the coordinate axes (Fig. 4.3). We are now fully pre-
pared to tackle second order tensors, which will allow us to quantify the rela-
tions between different families of  vectors. These second order tensors will take us 
to the very core of  structural geology. We will still be doing just multiplication and 
additions (mostly), but first, we’ll need to introduce some concepts about matrices. 

X1

X2

X3

X′1

X′2
X′3
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Matrices and Indicial Notation 
In the last chapter, we saw that the transformation of  a vector could be de-

scribed with three simple equations (4.4), repeated here: 

	 	 (5.1) 

As was pointed out at the time, the subscripts in these equations, all of  which refer 
to specific coordinate axes, vary in an extremely systematic and precise way. That is 
because these equations are an alternative way of  writing down a matrix multi-
plication: 

	 	 (5.2) 

Note that the subscripts of  the matrix a vary in exactly the same way as the sub-
scripts, or indices, of  aij in (5.1). Equation (5.2) works because there are the same 
number of  columns of  a as there are rows of  v. For this reason, you cannot write 
the left side of  the equation as v′ = va because v has only one column but a has 
three rows. That is, matrix multiplication is non-commutative: the order of  the 
multiplication matters. This will be an extremely important insight when we come 
to finite strain in a few more chapters; strain is mathematically represented as a ma-
trix multiplication so the order in which strain is superimposed determines the final 
outcome.  

Matrix multiplication gives us another way to write the dot product of  two 
vectors, where we use the transpose of  one of  the vectors (i.e., one of  the vectors 
is “flipped”): 

	 	 (5.3) 

v′ 1 = a11v1 + a12v2 + a13v3

v′ 2 = a21v1 + a22v2 + a23v3

v′ 3 = a31v1 + a32v2 + a33v3

v′ = av =
v′ 1

v′ 2

v′ 3

=
a11 a12 a13
a21 a22 a23
a31 a32 a33

v1
v2
v3

u ⋅ v = uvT = [u1 u2 u3]
v1
v2
v3

= u1v1 + u2v2 + u3v3
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You can imagine that it gets pretty tedious to keep writing out the equations 
in (5.1) or the right side of  (5.2) and the bold text on the left side of  (5.2), known as 
matrix notation, is one type of  shorthand. There is a second type of  shorthand, 
known as the summation convention, that is more convenient, especially when 
it comes to implementing these equations in a programing language. Using the 
summation convention, we would write Equations (5.1) and (5.2) as: 

	 	 (5.4) 

Let’s break this down and see how it works. As we have already seen i and j can 
vary from 1 to 3 in value because there are three axes to our Cartesian coordinate 
system. There is one i one each side of  the equation and it is referred to as the free 
suffix; that means there will be three equations and, in each, i will have a constant 
value. The index j is known as the dummy suffix and appears twice on the right 
hand side, only, of  Equation (5.4). Thus, the summation occurs with respect to j in 
each of  the three equations as shown in the following equation: 

	 	 (5.5) 

The “recipe” for the summation convention takes a little practice but it turns out to 
be quite powerful and so is worth learning. 

We will encounter various properties of  matrices in the subsequent chapters 
but for right now, we’ll wrap up with three important terms: a matrix is symmet-
ric if  there are six independent values and the three off-diagonal components 
above the principal diagonal are the same as the three below the principal diagonal 
(Fig. 5.1). That is, T12 = T21, T13 = T31, and T23 = 
T32. If  a matrix is asymmetric then there are nine 
independent components and T12 ≠ T21, T13 ≠ T31, 
and T23 ≠ T32. Finally, a matrix can be antisym-
metric with three independent components where 
the values along the principal diagonal are all zeros 
and T12 = –T21, T13 = –T31, and T23 = –T32. 

v′ i = aijvj

v′ i =
3

∑
j=1

aijvj = ai1v1 + ai2v2 + ai3v3
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Figure 5.1 — Anatomy of  a 3 
× 3 matrix.
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Tensors 
In this Chapter, when we use the term “tensors”, we are specifically referring 

to second order or second rank tensors. All tensors can be expressed as matrices (a 
3 × 3 matrix in the case of  second order tensors) but not all matrices are ten-
sors. In order to be a tensor, the matrix must represent an entity or quantity that 
transforms like a tensor; that is, the components must change in a logical and sys-
tematic way during a coordinate transformation. Note that the transformation ma-
trix, a, is itself  not a tensor! A common convention is that tensors are written with 
brackets, [ ], whereas matrices that are not tensors are written with parentheses, ( ). 
We used this convention, for example, in Equation (5.2). Because all tensors can be 
written as matrices, they can be symmetric, asymmetric, etc., and any operation 
that can be performed on a matrix can likewise be performed on a tensor. 

Tensors as Linear Vector Operators 

The best way to think of  a second order tensor is that it relates two families 
of  vectors. In the case of  stress, discussed later in this chapter, the stress tensor re-
lates the stress vector (or traction) on a plane to the orientation of  the plane. In the 
case of  strain, as we shall see in a subsequent chapter, the displacement gradient 
tensor (one of  many tensors related to strain!) relates the position vector of  a point 
to the displacement of  the point during a deformation. If  we know the stress tensor, 
we can calculate the stress vector on a plane of  any orientation within a body. You 
can imagine that this is hugely important in any study of  earthquakes, induced 
seismicity, faulting, etc. Likewise, with the displacement gradient tensor, we can cal-
culate how all points within a body are displaced as a function of  position during a 
deformation. 

The basic way that this relationship is written is as follows: 

	 	 (5.6a) 

Where u and v are generic vectors and T a generic tensor that relates the two vec-
tors. This equation expands following the rules of  summation or tensor notation: 

ui = Tijvj
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	 	 (5.6b) 

	 	 (5.6c) 

You already know how to do this expansion because it looks a lot like Equations 
(5.1-5.3). All of  these equations represent the multiplication of  a 3 × 3 and a 3 × 1 
matrix. Beyond this mathematical similarity, they are entirely different. First, in 
Equation (5.1) it is the same vector, v, on both sides of  the equation whereas u and 
v are two entirely different vectors in Equation (5.6). Secondly, T is a tensor as 
shown by the brackets in (5.6b), whereas a in Equation (5.2) is not. 

There is a second way to make a second order tensor out of  two vectors by 
taking the dyad (tensor) product of  those two vectors. In indicial notation, we 
can write: 

	     or     	 (5.7a) 

The right hand side of  (5.7) does not involve any summation because there is no 
dummy (i.e., repeated) suffix. So T simply works out to: 

	 	 (5.7b) 

The dyad product has important applications in earthquake and faulting studies 
and also in constructing the orientation tensor as we shall see below. This is just one 
example of  the magic of  matrix multiplication: uvT (eqn. 5.3) give you a scalar 
whereas uTv (eqn. 5.7) yields a second order tensor! 

Principal Axes of  a Tensor 

Because our second order tensor is, well, a tensor, we can rotate the axes of  
the coordinate system and the values of  the tensor will change. It turns out that, for 

u1
u2
u3

=
T11 T12 T13
T21 T22 T23
T31 T32 T33

v1
v2
v3

u1 = T11v1 + T12v2 + T13v3
u2 = T21v1 + T22v2 + T23v3
u3 = T31v1 + T32v2 + T33v3

T = u ⊗ v = uTv Tij = uivj

Tij =
u1v1 u1v2 u1v3
u2v1 u2v2 u2v3
u3v1 u3v2 u3v3
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symmetric tensors, there is one set of  axes where all the off-diagonal components 
will be zero and there will only be values along the principal diagonal. Because 
symmetric tensors can be represented by ellipsoids, this special set of  axes occurs 
when the coordinate system is aligned with the principal axes of  the ellipsoid (Fig. 
5.2). Not surprisingly, these are called the principal axes of  the tensor and, 
when referring to magnitude and not orientation, are labeled from largest 
to smallest T1, T2, and T3. For the magnitude ellipsoid shown in Figure 5.2 we 
would write: 

	 	 (5.8) 

The magnitude does not have to coincide with the number of  the same axis! In fig-
ure 5.2, the long axis of  the magnitude ellipsoid is parallel to the X′2 axis. Double 
subscripts and the position in the matrix always refer to the coordinate system axes 
and not to the magnitude. Thus, in this example, T′22 = T1.  

The transformation from a random coordinate system to one where the axes 
are parallel to the principal axes is usually determined numerically by solving the 
eigenvalue problem. The derivation and solution to the eigenvalue problem is be-

Tij′ =
T11′ 0 0

0 T22′ 0
0 0 T33′ 

=
T2 0 0
0 T1 0
0 0 T3
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Figure 5.2 — The magnitude ellip-
soid of  a tensor and two different 
coordinate axes through the ellip-
soid. The red, primed coordinate 
system coincides with the principal 
axes of  the ellipsoid. In that coordi-
nate system, we can define the prin-
cipal axes of  the tensor.
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X2

X3

X′1

X′2
X′3
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yond the scope of  this manual; see Allmendinger et al. (2012) or any book on Lin-
ear Algebra. The mathematical procedure gives us a cubic polynomial: 

	 	 (5.9) 

The three roots of  λ are the three eigenvalues, which correspond to the magnitudes 
of  the three principal axes. Once one has the eigenvalues you can calculate the 
eigenvectors, which give the orientations of  the three principal axes. The three 
coefficients, I, II, and III are known as the invariants of  the tensor and they turn 
out to have important physical significance in many cases. Their values are: 

	 	 (5.10) 

Where  is the determinant of  tensor T. The significance of  the in-
variants is that they have the same values in any coordinate system. When we say 
that the fundamental nature of  a second rank tensor doesn’t change upon trans-
formation, we are referring to the invariants. 

Tensor Transformations and the Mohr’s Circle 

Given that we just mentioned tensor transformations, how does one go about 
transforming a tensor? In principle, it is similar to a vector transformation: if  we 
have a transformation matrix and a tensor in the old coordinate system, we can 
calculate the same tensor in the new system. However, it is more involved because a 
second order tensor is a more complicated entity than a first order tensor (i.e., a 
vector). The derivation of  the tensor transformation equation is relatively straight-
forward; you can find it in Nye (1959), Allmendinger et al. (2102), or a variety of  
other sources. Here it is using the summation convention, yielding the new tensor 
in terms of  the old: 

	 	 (5.11) 

λ3 − Iλ2 − IIλ − III = 0

I = T11 + T22 + T33 + = T1 + T2 + T3

II =
(TijTij − I2)

2
= − (T1T2 + T2T3 + T3T3)

III = det T = Tij = T1T2T3

det T = Tij

Tij′ = aikajlTkl
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This equation looks complicated and it does represent nine equations with nine 
terms each! The expansion is not so much complex as it is tedious. Here, for exam-
ple is the expansion of  one of  the nine terms: 

	 	 (5.12) 

Don’t worry! You’re not going to be asked to expand these equations. This type of  
systematic equation is what computers live for and nobody solves these by hand 
anymore. If  you ever want to impress your friends (uh… sure), the parenthetical 
statements in Equation (5.12) show you how k and l vary systematically. With the 
single equation arranged the way it is, you can see that k increments by one in each 
row whereas l increments by 1 in each column. 

Long before there were computers to do these calculations for us, in the late 
1800s a German engineer by the name of  Otto Mohr introduced a clever graphical 
solution to a common, but special case of  tensor transformation which has become 
known as Mohr’s Circle. In the Mohr construction, the old coordinate system is 
parallel to the principal axes of  the tensor. The coordinate system is then trans-
formed by rotating by θ° about one of  the principal axes, commonly T2 (Fig. 5.3). 
Thus the initial form of  the tensor in the old coordinate system is: 

T13′ =

(l = 1) (l = 2) (l = 3)
a11a31T11 + a11a32T12 + a11a33T13 (k = 1)

+a12a31T21 + a12a32T22 + a12a33T23 (k = 2)
+a13a31T31 + a13a32T32 + a13a33T33 (k = 3)
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Figure 5.3 — The coordinate transformation 
involved in constructing Mohr’s circle for a 
generic tensor, T, by rotating the coordinate 
system around the intermediate principal axis 
of  the tensor 
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	 	 (5.13) 

And the transformation matrix is: 

	 	 (5.14) 

For example, expanding Equation (5.12) we get: 

	  

The entire tensor, T, in the new coordinate system is: 

	 	 (5.15) 

These equations can be put into a more useful form by substituting some common 
double angle formulae: 

	 ;     ;      	 (5.16) 

The coordinates of  the tensor in the new coordinate system are: 

Tij =
T1 0 0
0 T2 0
0 0 T3

a =
cos θ cos 90 cos (90 − θ )

cos 90 cos 0 cos 90
cos (90 + θ ) cos 90 cos 0

=
cos θ 0 sin θ

0 1 0
−sin θ 0 cos θ

Tij′ = cos θ(−sin θ)T1 + cos θ (0) (0) + cos θ cos θ (0)

+(0) (−sin θ) (0) + (0) (0) T22 + (0) cos θ (0)

+sin θ (−sin θ) (0) + sin θ (0) (0) + sin θ cos θT3

= − cos θ sin θT1 + sin θ cos θT3

= (T3 − T1) cos θ sin θ

Tij′ =
(T1 cos2 θ + T3 sin2 θ) 0 (T3 − T1) sin θ cos θ

0 1 0
(T3 − T1) sin θ cos θ 0 (T1 sin2 θ + T3 cos2 θ)

sin 2θ = 2 sin θ cos θ sin2 θ =
1 − cos 2θ

2
cos2 θ =

1 + cos 2θ
2
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	 	 (5.17) 

These equations are in the parametric form of  a circle with 

	 center at:  and a radius,  

We’ll see just how this works in the section on stress, below. However, you should 
realize that just about any second order tensor can be represented by a Mohr Circle 
construction. Time for some geological applications. 

The Orientation Tensor 
The first application harkens back to Chapter 2 and the limitations of  the 

mean vector calculation (Fig. 2.11) and Chapter 3 and the π-diagram (Fig. 3.9). The 
solution is to calculate the least squares best fit to a distribution of  lines (poles, real-
ly). The result, however, will allow us to characterize any line distribution and it will 
not suffer from the lower hemisphere artifacts that plague the mean vector calcula-
tion. 

Least Squares Best Fit Fold Axis 

In Chapter 3, we simply “eye-balled” in a great circle which fit the bedding 
poles in the π-diagram (or perhaps you used a cylindrical best fit plotting option 
without knowing how it worked). Here, we will actually calculate the best fitting 
great circle and fold axis by minimizing the sum of  the squares (Charlesworth et al., 
1976). If  a unit bedding pole  is perfectly oriented, then the angle between it and 
the unit vector parallel to the fold axis, , is 90° (Fig. 5.4); it is the deviation from 
this perfect case that we will minimize. Fortunately, there is a simple function that 
we can use: the dot product of   and , written as in Equation (5.3) is: 

T11′ = ( T1 + T3

2 ) + ( T1 − T3

2 ) cos 2θ

T33′ = ( T1 + T3

2 ) − ( T1 − T3

2 ) cos 2θ

T13′ = T31′ = − ( T1 − T3

2 ) sin 2θ

( T1 + T3

2
,0) r = ( T1 − T3

2 )

p̂[i]
̂f

̂f p̂[i]
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	 	 (5.18) 

where  is the i’th bedding pole in the data set. The sum of  the squares of  the de-
viations of  all of  the poles, S, is: 

	 	 (5.19) 

Because the dot product is commutative, it can be written as: 

	 	 (5.20) 

And we can rewrite Equation (5.19) as: 

	  where 	 (5.21) 

T is known as the orientation tensor and it is composed of  the sum of  the dyad 
products of  each unit pole vector with itself  (Eqn. 5.7a). Expanding for one vector: 

	  

cos θi = p̂[i]
̂fT

p̂[i]

S =
n

∑
i=1

cos2 θ[i] =
n

∑
i=1

(p̂[i]
̂fT)

2

p̂[i]
̂fT = ̂fp̂T

[i]

S =
n

∑
i=1

̂fp̂T
[i]p̂[i]

̂fT = ̂fT ̂fT T =
n

∑
i=1

p̂T
[i]p̂[i] =

n

∑
i=1

(pi pj)[i]

p̂T
[i]p̂[i] =

cos α[i]

cos β[i]
cos γ[i]

[cos α[i] cos β[i] cos γ[i]] =

cos2 α[i] (cos α[i] cos β[i]) (cos α[i] cos γ[i])
(cos β[i] cos α[i]) cos2 β[i] (cos β[i] cos γ[i])
(cos γ[i] cos α[i]) (cos γ[i] cos β[i]) cos2 γ[i]
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Figure 5.4 — Finding the best fit fold axis given 
a number number of  bedding poles. The dot 
product of  a single bedding pole unit vector p[i] 
and and the fold axis unit vector, f, is the cosine 
of  the angle between them, θ. A perfectly ori-
ented pole should be 90° from the fold axis and 
so the cosine should equal zero. The deviation 
from zero is the deviation we are trying to min-
imize.
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So the entire orientation tensor, T, will be: 

	 	 (5.22) 

The smallest eigenvalue of  this symmetric matrix is the minimization of  the sum of  
the deviations; thus the corresponding eigenvector should be the fold axis. 

Types of  Line Distributions 

The orientation tensor was derived for fitting a fold axis to the distribution of  
lines in a plane (i.e., the profile plane). It turns out that it is a much more generally 
useful calculation. Figure 5.5 depicts three very different end member types of  line 
distributions and the resulting eigenvalues and eigenvectors of  the orientation ten-
sor. The bipolar distribution (Fig. 5.5a) is the one that fails miserably in a mean vec-
tor calculation because the vectors plunging in opposite directions cancel each oth-
er out. However, the orientation tensor captures the preferred orientation quite 
nicely with the eigenvector of  the largest eigenvalue coinciding with the NW-SE 
orientation of  the point cluster. The relative values of  the three eigenvalues clearly 
identify a single cluster because there is one large eigenvalue (near 1) and two small, 

T =

∑ cos2 α[i] ∑ (cos α[i] cos β[i]) ∑ (cos α[i] cos γ[i])
∑ (cos β[i] cos α[i]) ∑ cos2 β[i] ∑ (cos β[i] cos γ[i])
∑ (cos γ[i] cos α[i]) ∑ (cos γ[i] cos β[i]) ∑ cos2 γ[i]
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Eigenvalue   Trend & Plunge
1.  0.3710   352.8,  59.6
2.  0.3507   106.5,  13.3
3.  0.2784   203.3,  26.8

Eigenvalue   Trend & Plunge
1.  0.5672   306.7,  53.0
2.  0.4229   211.8,  03.7
3.  0.0098   119.0,  36.7

Eigenvalue   Trend & Plunge
1.  0.9278   307.9,  01.1
2.  0.0597   048.3,  83.7
3.  0.0125   217.8,  06.2

(a) (b) (c)

Figure 5.5 — Different types of  lines distributions: (a) bipolar; (b) girdle; and (c) 
random. Each diagram has 30 lines.
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near zero eigenvalues. In the girdle distribution (Fig. 5.5b), there is one small, 
near zero eigenvalue that corresponds to the fold axis and two large, relatively 
equal eigenvalues (near 0.5) whose eigenvectors lie within the profile plane through 
the points. Finally, the random distribution (Fig. 5.5c) has three relatively equal ei-
genvalues. Note that it would be quite possible to have a non-random distribution 
produce three equal eigenvalues if  you had three clusters of  points representing an 
equal number of  lines with each cluster 90° from the others. In general, though, 
the eigenvalues give you a first order way of  characterizing point distributions.  

A spreadsheet to calculate the orientation tensor is shown in Figure 5.6. Note 
that eigenvalues suggest something between a girdle and a point distribution. 

The Stress Tensor 

Cauchy’s Law 

Whereas the orientation tensor is created by the dyad product of  a pole vec-
tor with itself, the stress tensor is a more normal type of  linear vector operator. In 
this section, I’ll assume that you’ve already learned about stress — the mechanics 
type, that is — in the lecture part of  your structural geology class. When most peo-
ple say that “stress is equal to force [a vector] divided by area [a scalar]” what they 
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Figure 5.6 — Spreadsheet for calculating the orientation tensor from trends and 
plunges of  ten poles to planes. Note that you only need to calculate six components 
because the tensor is symmetric.
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are really referring to is the stress vector or traction on a particular plane of  in-
terest. The stress tensor is different: it relates the stress on planes of  all possible 
orientations through a point in a body to the tractions on those planes. 

	 	 (5.23a) 

Where pi is the traction on a particular plane,  is the direction cosines of  the pole 
to the plane and and σij is the stress tensor. Equation (5.23a) is very important and 
is known as Cauchy’s Law. It expands as follows: 

	 	 (5.23b) 

We can get insight into the meaning of  the components of  the stress tensor by look-
ing at some special cases. Let’s assume first that the plane we’re interested in is per-
pendicular to the X1 axis. In this case, the pole direction cosines will be [1, 0, 0]. 
Substituting these values into Equation (5.23) we see that the tractions on the plane, 
p, are . Likewise, a plane perpendicular to the X2 axis will have 
direction cosines of  [0, 1, 0] and the tractions on that plane are  and 
the plane perpendicular to X3 will have tractions of  . In other words, 
the components of  the stress tensor are simply the tractions on the 
planes that are perpendicular to the three coordinate axes. 

Written as they are in the preceding paragraph, derived from Cauchy’s Law, 
the subscripts of  the stress tensor have the following meaning: the first subscript in-
dicates which axis the traction vector is parallel to and the second subscript indi-
cates that axis that the plane is perpendicular to. This is opposite to the convention 
that one sees more commonly in structural geology textbooks. That’s okay, though, 
because it turns out that the stress tensor is symmetric (thanks to conservation of  
angular momentum and Cauchy’s 2nd Law of  Motion). That is, 

	 ,     ,     	 (5.24) 

Thus, it is also true that the first subscript indicates the axis perpendicular to the 
plane and the second subscript the axis to which the traction vector is parallel 

pi = σijℓj

ℓj

p1 = σ11ℓ1 + σ12ℓ2 + σ13ℓ3

p2 = σ21ℓ1 + σ22ℓ2 + σ23ℓ3

p3 = σ31ℓ1 + σ32ℓ2 + σ33ℓ3

pi = [σ11 σ21 σ31]
[σ12 σ22 σ32]

[σ13 σ23 σ33]

σ12 = σ21 σ13 = σ31 σ23 = σ32
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(Fig.5.7). Thus each of  the three planes normal to the coordinate system has one 
stress vector perpendicular to the plane and two stresses vectors parallel to the 
plane. The perpendicular stress, or normal stress vector, has two equal sub-
scripts and occur along the principal diagonal of  the stress tensor. Those parallel to 
the plane, or shear stress vectors, have unequal subscripts and are in the off-di-
agonal position in the tensor. We will use σn to indicate the normal traction (or 
stress vector) on a plane and either τ (tau) or σs for shear stress vectors on a plane 
The symmetry of  the stress tensor and the equivalence of  the shear stresses (Eqn. 
5.24) is sometimes called the theorem of  conjugate shear stresses. 

Note that when we calculate the traction on a plane using Cauchy’s Law 
(Eqn. 5.23), the vector is, in the most general case, neither normal nor parallel to 
the plane. The components of  p are always parallel to the axes of  the coordinate 
system (Fig. 5.8). As we will see later on, one way to calculate the normal and shear 
stress on the plane is to transform the vector into a coordinate system where the X′1 
axis is perpendicular to the plane. The normal and shear stress vectors on a plane 
are key pieces of  information to determine whether or not faulting, or earthquakes, 
will occur. 

MODERN STRUCTURAL PRACTICE 101 R. W. ALLMENDINGER © 2015-20

X1

X2

X3

pla
ne

 ⊥
 X 3

σ31

σ32

σ33

X1

X2

X3

σ11

σ12

σ13

plane ⊥ X1

X1

X2

X3

σ22σ21

σ23

p
la
n
e
 ⊥

 X
2

Figure 5.7 — The meaning of  the components of  the stress tensor. They are the normal 
and shear stresses on planes perpendicular to the axes of  the coordinate system. Normal 
stresses have equal subscripts whereas shear stresses have unequal subscripts
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Mohr’s Circle for Stress 

Like any symmetric second or-
der tensor, stress can be represented on 
a Mohr Circle construction. This 
graphic is a very common way of  dis-
playing stress on planes, even if  behind 
the scenes the values are calculated us-
ing tensor transformations. In Mohr’s 
Circle for stress, one plots normal 
stress the horizontal axis and shear 
stress on the vertical axis. Before mak-
ing a plot, though, we need to discuss 
sign conventions for both of  these 
quantities. Although the engineering 
sign convention is that tension is posi-
tive and compression negative, within 
the Earth, almost all normal stresses 
are compressions except close to the 
surface. Thus, in geology, compres-
sion is treated as positive and ten-
sion negative. The sense of  shear also has a sign and this, too, depends on your 
perspective. If  one derives the Mohr’s Circle in the traditional way as a force bal-
ance, counterclockwise (i.e., left-lateral) shear is positive and clockwise (i.e., right-
lateral) shear is negative. However, if  it is derived as a tensor transformation, then 
the opposite convention applies. We will use the geological sign convention. 

The equations for the Mohr’s Circle for stress for planes that are parallel to 
σ2 are: 

	 	 (5.25a) 

	 	 (5.25b) 

σn = ( σ1 + σ3

2 ) + ( σ1 − σ3

2 ) cos 2θ

τ = σs = ( σ1 − σ3

2 ) sin 2θ
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Figure 5.8 — The traction vector, p, on a 
plane whose pole that makes an angle of  α 
with respect to X1 and β with respect to X2. 
The plane is viewed edge on so it appears as 
a diagonal line. The traction vector is scaled 
correctly given the components of  the stress 
tensor and angles shown.
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θ is the angle between the pole to the plane of  interest and σ1. Similar equations 
can be derived for the two inner circles. There are many ways of  deriving the 
Mohr Circle equations: as a force balance, using Cauchy’s law and a vector trans-
formation, or using a tensor transformation (Eqns. 5.11 - 5.17). 

In the most general case of  Mohr’s Circle for stress, there will be three nested 
circles defined by the three principal stresses (Fig. 5.9). The simplest case for plot-
ting normal and shear stresses is when the plane of  interest is parallel to one of  the 
three principal axes (e.g., the red dot in Fig. 5.9). In that case, one simply deter-
mines the angle between the pole to the plane and the largest principal stress, θ, 
and then measures 2θ counterclockwise from the side of  the circle with largest 
principal stress as shown in Figure 5.9. When the plane is not parallel to any of  the 
principal stresses, the manual plotting procedure is more cumbersome and consists 
of  drawing arcs of  concentric circles defined by the three angles, α, β, and γ, that 
the pole makes with the three principal stresses (see Allmendinger et al., 2012, if  
you want to know how to do this). A program like MohrPlotter can do this calcula-
tion and plot directly. But, of  course, it is more satisfying to calculate the stresses 
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Figure 5.10 — spread-
sheet for calculating the 
tractions on a plane 
whose pole makes angles 
of  alpha, beta, and gam-
ma with respect to the 
three principal stresses.

Figure 5.9 — Basic Mohr’s Circle 
construction for stress where σ1 = 
120 MPa, σ2 = 60 MPa, and σ3 = 20 
MPa. The only possible normal and 
shear stress combinations are along 
the edges of  the circles or in the pink 
shaded region. Two planes are 
shown: that in red is parallel to σ2 
and its pole is 30° (2θ = 60°) from σ1. 
The blue plane is not parallel to any 
principal stress; its pole is 65° from 
σ1, 50.74° from σ2, and 49.55° from σ3. 
Dashed lines are construction lines.
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directly! We can use Equation (5.23) to calculate the tractions on the plane directly 
and this is done in the spreadsheet in Figure 5.10 for the same angle values as blue 
plane in Figure 5.9. In the next chapter, we’ll actually calculate the normal and 
shear stresses. 

A couple of  things bear emphasizing in the example in Figure 5.10. First, 
this calculation takes place in the principal stress coordinate system, which is why 
the stress tensor has such a simple appearance. Without knowing the orientation of  
the plane or of  the principal stresses, we have no idea the values of  the tractions in 
a geographic coordinate system. The same is true of  the Mohr’s Circle construc-
tion: it represents a principal stress coordinate system; without knowing the orienta-
tions of  the stresses, a plane represented could be a normal, thrust, or strike-slip 
fault plane. Second, the angles α, β, and γ are not independent of  each other; only 
two out of  the three can be independently specified. Their direction cosines must 
yield a unit vector (thus the magnitude test in column H). 

Mean Stress & Deviatoric Stress 

Earlier in the Chapter, we saw that symmetric tensors have invariants, and 
the first invariant of  the stress tensor is the sum of  the stresses along the principal 
diagonal. This allows us to define the mean stress, σm, which is the same in all coor-
dinate systems: 

	 	 (5.26) 

The total stress can then be defined as the mean stress plus the deviatoric stress: 

	 	 (5.27) 

σm =
Iσ

3
=

σ11 + σ22 + σ33

3
=

σ1 + σ2 + σ3

3

σij =
σm 0 0
0 σm 0
0 0 σm

+ [
σ11 − σm σ12 σ13

σ21 σ22 − σm σ23
σ31 σ32 σ33 − σm

]
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Exercises—Chapter 5 
All of  the following exercises should be done either in a spreadsheet or Matlab. If  
you use a spreadsheet, you will need to download the simple utility program 
EigenCalc in either Macintosh or Windows version: 

 http://www.geo.cornell.edu/geology/faculty/RWA/programs/utility-programs/eigencalc.html 

This program will take the matrix that you calculate in the spreadsheet and calcu-
late the eigenvalues and eigenvectors for you, which is much less cumbersome than 
trying to figure out how to get the spreadsheet to do it! 

You might also find useful a program to plot Mohr Circles for stress, Mohr-
Plotter, which can be downloaded from: 

 http://www.geo.cornell.edu/geology/faculty/RWA/programs/mohrplotter.html 

Even though MohrPlotter can do some of  the calculations for you, you must still do 
the calculations in a spreadsheet or Matlab. For all problems, assume a North-East-
Down coordinate system unless otherwise noted. 

1. In a spreadsheet or in Matlab, calculate the orientation tensor for the strikes 
and dips that you used to construct a pi-diagram of  the Big Elk anticline in 
Chapter 3. Note that you do not have to find the eigenvalues or eigenvectors of  
the resulting matrix, just construct the orientation tensor in a North-East-Down 
coordinate system. If  you choose to use Matlab, please write your own code 
rather than just cutting and pasting the code from Allmendinger et al. 

2. A state of  stress with the following principal stress magnitudes σ1 = 40 MPa, σ2 
= 20 MPa, σ3 = 10 MPa, has σ1 axis oriented vertically, σ2 aligned in a horizon-
tal E-W direction, and σ3 in a horizontal N-S direction. Using Cauchy’s law, 
calculate the magnitude and orientation of  the tractions acting on a plane strik-
ing 060º and dipping 55º SE. 

3. For the same state of  stress described in question 2, but a different plane that 
has a strike in right hand rule of  270, 60, 
(a) Use Cauchy’s law to calculate the tractions on the plane 
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(b) Use Mohr’s Circle for stress to calculate the normal and shear stress on the 
plane 

(c) Reconcile your answers in parts (a) and (b) by showing that they are actually 
the same answer. 

(d) If  the plane with strike of  270, 60 were a fault plane, what type of  fault 
would it be? 

4. The following matrix gives the stress tensor in a NED coordinate system (units 
are MPa): 

	  

(a) Use Cauchy’s Law to determine the tractions on a plane with a strike and 
dip (right hand rule) of  045, 22. 

(b) The principal stresses for this stress tensor, given by calculating the ei-
genvalues and eigenvectors, are σ1 = 63.23 MPa with a trend and plunge of  
068, 36; σ2 = 24.4 MPa, 317, 26; and σ3 = 7.39 MPa, 200, 43. Plot the 
normal and shear stress on the 3D Mohr circle for stress as shown on page 
110 of  ACF (2012). 

5. Two planes are both parallel to σ2. The first has a normal stress, σn = 55 and 
shear stress, τ = 17 MPa. For the second, σn = 27 and shear stress, τ = 13 MPa. 
(a) Use a Mohr Circle construction to calculate the magnitude of  the principal 

stresses, σ1 and σ3. [Hint: the perpendicular bisector of  a chord in a circle 
goes through the center of  the circle]. 

(b) If  plane 1 has a strike and dip (RHR) of  084.7, 40.3 and plane 2, 046.3, 
70.7, use a stereonet to determine the trends and plunges of  the three prin-
cipal stresses. 

σ ij =
20 6 15
6 45 20

15 20 30

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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Chapter 6 
Faulting and Stress 

Introduction 
We now have the tools necessary to begin to understand faulting. Faulting is 

probably the most important type of  deformation in the upper crust of  the earth 
and, as we’ll see in later chapters, is often accompanied by folding. An earth-
quake is just a single, rapid (i.e., geologically instantaneous) movement on a fault 
and induced seismicity are earthquakes cause by humans, often due to subsur-
face pumping of  fluids and the interaction of  those fluids with pre-existing faults. 

Needless to say, these are phenomena of  great, and increasing, societal interest! 

As you know from the lecture part of  your course, a fault is a break or frac-
ture in the rock across which there has been movement parallel to the fault surface. 
We know that movement parallel to a surface is called shear and so it won’t come 
as a surprise that the shear stress on a fault plane is an important parameter to 
quantify. However, as we shall see, the normal stress on a fault plane is equally im-
portant. We now have the ability to analyze these parameters and will do so after a 
brief  review of  fault geometry and the introduction of  two additional key concepts: 
friction and pore pressure. 
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Fault Geometry Review 

Terminology 

Cracks or fractures in a rock can occur in one, or a combination, of  three 
fundamental modes (Fig. 6.1). In mode I, there is opening perpendicular to the 
crack but no shear and we call the resulting geological structure a joint or, if  it is 
filled with mineral precipitate, a vein. Most faults in the subsurface are approxi-
mately elliptical surfaces that terminate in a tip line (really a loop) which separates 
faulted from unfolded (i.e., intact) rock. Depending on the position along the fault 
surface, the fault may resemble either a mode II (shearing perpendicular to the tip 
line) or a mode III (shearing parallel to the tip line) crack. For example, near where 
a dip slip fault dies out along strike, you are likely to see mode III style behavior 
whereas in the middle of  the fault trace, mode II would be more common. 

Faults are classified in a variety of  ways (Fig. 6.2). For faults in which the 
movement is parallel to the dip direction, they are further subdivided in terms of  
whether the hanging wall block moved down (normal faults, Fig. 6.2a) or up (re-
verse faults, Fig. 6.2b). Faults that moved parallel to the strike likewise are subdi-
vided into whether the opposing block (i.e., the one opposite the block the observer 
is on) appears to move to the right (Fig. 6.2c) or left (Fig. 6.2c). Of  course, few faults 
fit these end members exactly and most have combinations of  movement parallel to 
strike and to dip; these are known as oblique-slip faults. 

Faults can also produce a component of  rotation of  one block relative to the 
other. If  the two blocks are to remain in contact (a constraint known as strain com-
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Mode I!
(opening)

Mode II!
(sliding)

Mode III!
(tearing)

Figure 6.1 — The three modes of  cracking, with the crack surface colored 
red. Mode I cracks correspond to joints or veins because they have open-
ing but no shear. Modes II and III are faults.
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patibility, which we will see later on), then only two different orientations of  the ro-
tation axis are possible: (a) perpendicular to the fault plane, or (b) parallel to the 
fault plane. The latter case is only possible if  the fault plane is a curved surface. 
Curved fault surfaces where the dip diminishes with depth are known as listric 
faults. A rotation axis perpendicular to the plane will produce a scissors fault 
(Fig. 6.3). 

Planar features like stratification are common in geology and it is tempting to 
think that the apparent offset that one sees of  such features, either on the surface or 
in cross section, represents the actual movement of  the fault. We call such apparent 
offset of  a planar feature separation (Fig. 6.4) The actual vector displacement of 
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Figure 6.2 — Basic end-
member fault types. In 
each case, the red arrow is 
a slip vector which shows 
the offset of  two originally 
adjacent points. The slip is 
in the dip direction in (a) 
and (b), and in the strike 
direction in (c) and (d). The 
stick figure is holding out 
their right arm in (c) and 
their left arm in (d).

Dip Slip Faults

Strike Slip Faults

(a) (b)

(c) (d)

Normal Reverse

Right-lateral Left-lateral

hanging 
wall

footwall

(a) (b)

Figure 6.3 — Rotational faults: (a) listric normal fault where the rotation axis 
(in red) is parallel to the curved fault surface. (b) Scissors fault where the rota-
tion axis is perpendicular to the planar fault plane.
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two originally adjacent points across a fault surface is called slip. It is critically im-
portant to distinguish clearly between these two concepts. Separation is not very 
useful (e.g., Fig. 6.4b) except when accompanied by independent evidence such as 
observation of  striations or slickensides on the fault surface. It is seldom possible to 
find two originally adjacent points that have been offset across a fault so, instead, 
we use offset linear features. A line intersects a plane in a point, and therefore our 
offset lines intersect the fault plane in what are known as piercing points. The 
slip can be determined if  piecing points on the fault surface can be calculated. 

Determining Slip from Piercing Points 

As we have just seen, separation, al-
though easy to determine, is not very useful. 
Slip, on the other hand, is incredibly useful for a 
whole range of  problems in structural geology. 
Slip is most effectively determined from offset 
piercing points of  linear features so the question 
becomes: how does one determine a piercing 
point, especially given that, in general the pierc-
ing point will either be in the subsurface or in the air and thus not directly observ-
able? The vector methods we learned in earlier chapters come to the rescue for the 
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Figure 6.4 — Slip versus separation. (a) Block diagram illustrating an offset planar layer 
that contains a linear feature shown as a dashed line. The linear feature intersects the 
fault plane in two red points known as piercing points and the slip vector (heavy red ar-
row) connects the piecing points. Note that the strike and dip separation shown are neither 
parallel to, nor the same magnitude as the slip vector. (b) schematic map view of  a plung-
ing syncline offset by a fault. Note that the strike separation is in the opposite direction on 
the two limbs of  the fold!

strike separation

dip separation

(a) (b)

slip

As you begin to derive your own 
functions related to geometry, you 
may find the web site by Paul 
Bourke (http://paulbourke.net) 
very useful. The derivation in this 
section is modified from an algo-
rithm on his site.

http://paulbourke.net
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solution to this problem (Fig. 6.5). To solve this problem, we need to know one 
point, p1, on the line with a known trend and plunge that pierces the plane, and 
one point, p2, on the plane as well as the strike and dip of  the plane. Points p1 and 
p2 will usually be points on the surface of  the earth or well determined (e.g., 
drilled) points in the subsurface. The line, of  course could be any geological feature 
that can be identified — fold axis on a particular stratigraphic horizon, the inter-
section of  a dike and bedding, the intersection of  a stratigraphic horizon beneath 
an angular unconformity — as long as we can determine its trend and plunge and 
at least one point on each side of  the fault plane. 

For simplicity’s sake, our derivation only treats one of  the two piercing 
points. As you can see in Figure 6.5, the dot product of  the normal vector, n, and 
the vector between the position vectors p2 and p (the point in which we are inter-
ested) is zero because n is perpendicular to all vectors in the plane: 

	 	 (6.1) 

Point p also occurs along the line that pierces the plane. The vector distance be-
tween p1 and p is  where  is the unit vector calculated from the trend and 
plunge of  the linear feature. We can write that: 

	 	 (6.2) 

Substituting Equation (6.2) into (6.1) and rearranging, we get: 

	 	 (6.3) 

n̂ ⋅ [p − p2] = 0

u v̂ v̂

p = p1 + u v̂

n̂ ⋅ [p1 + u v̂] = n̂ ⋅ p2
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p2

p!
(hw)

v̂

n̂

uv̂

p1!
(fw)

p1!
(hw)

p!
(fw)

Figure 6.5 — Calculation of  pierc-
ing points, p, in the hanging wall 
(hw) and the footwall (fw) of  a 
fault plane shown as a gray-shad-
ed surface. n is the normal or the 
pole to the fault plane and v is the 
unit vector defined by the trend 
and plunge of  the line that pro-
duces the piercing points. Only 
p1, p2, n and v are needed to cal-
culate the piercing points, p.
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And solving for u we have: 

	 	 (6.4) 

There is one special case that will result in an error: if  the pole to the plane is per-
pendicular to the line then the denominator of  (6.4) will be zero. This means that 
the line is parallel to the plane and either does not intersect it at all or lies within 
the plane and there are an infinite number of  intersections! Once we know the 
scalar u, we can substitute it into Equation (6.2) and solve for the piercing point, p: 

	 ;     ;     	 (6.5) 

We can repeat this process for the piercing point on the other block of  the 
fault. Note that the trends and plunges of  the lines on the two sides of  the fault do 
not have to be equal to each other, thus accounting for faults across which there has 
been rotation. The final slip magnitude on the fault is just the magnitude of  the 
vector connecting the two piercing points: 

	 	 (6.6) 

Where p(hw) is the piercing point in the hanging wall and p(fw) is the offset piercing 
point in the footwall (Fig. 6.5). A sample calculation is shown in the spreadsheet in 
Figure 6.6. The expanded equation in the spreadsheet is the realization of  Equa-
tion (6.4). The only special note is that one must remember to calculate the direc-
tion cosines of  the trend and plunge of  the line and the pole to the plane in East-
North-Up coordinates rather than North-East-Down. The formula for Equation 
(6.6) is in cell B12 of  the spreadsheet. 

Note that the calculation we have just done can be used for a variety of  other 
useful tasks in geology. For example, you could use this same approach to deter-
mine the distance that you would need to drill along a particular trend and plunge, 
starting at some point on the surface, to intersect a fault plane, knowing nothing 
more than the strike and dip of  the plane and a single well determined point on the 
plane. The scalar distance, u, is given by Equation (6.4). 

u =
n̂ ⋅ [p2 − p1]

n̂ ⋅ v̂
=

n1 (p21 − p11) + n2 (p22 − p12) + n3 (p23 − p13)
n1v1 + n2v2 + n3v3

p1 = p11 + uv1 p2 = p12 + uv2 p3 = p13 + uv3

slip = (p (hw)1
− p (f w)1)

2
+ (p (hw)2

− p (f w)2)
2

+ (p (hw)3
− p (f w)3)

2
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Stress and Faulting 
Faulting occurs when the yield stress of  a material is exceeded and the mate-

rial fails locally. Ductile failure is an extremely important process in geology but we 
are going to leave it for a later chapter. In this chapter, we are only concerned with 
brittle failure, friction, reactivation, and the influence of  fluid pressure in the pores 
of  the material. Thus, the material here corresponds to the upper 10±5 km of  the 
Earth’s crust, an area of  particular interest for humans because of  earthquakes, as 
well as exploitation of  the subsurface for resources (hydrocarbons, water) and stor-
age of  waste (e.g., water water, carbon sequestration, etc.). There are two separate 
questions: (a) what are the macroscopic conditions under which a rock will break? 
and (b) under what conditions will preexisting fractures be reactivated? Pore fluid 
pressure will be important in both cases, but we will first examine the case without 
pore pressure. 

Failure in the Brittle Realm 

You have, no doubt, in the lecture part of  your structural geology course 
been introduced to the concept of  a failure envelope. This envelope is most often 
depicted on a plot of  shear stress versus normal stress as a line, symmetric about 
the normal stress axis, with several distinct parts (Fig. 6.7). A combination of  nor-
mal and shear stress that lies outside of  the envelope is one that will cause the ma-
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Figure 6.6 — spreadsheet to calculate the slip on a fault, given the strike and dip of  the 
fault plane and a position vector of  a point in the fault plane (p2), and the trend and 
plunge of  a line in the hanging wall and footwall, position vectors somewhere along 
those lines, and the trends and plunges of  the lines. In this example, we have assumed 
that the trend and plunge of  the line on either side of  the fault is the same but that is 
not necessary. The calculation of  the scalar quantity, u, has been expanded for view.
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terial to fail whereas those inside the envelope are stable. The important points on 
the failure envelop are: To — tensile strength; 1. transitional-tensile behav-
ior; So — cohesive strength; 2. Coulomb failure; and 3. von Mises failure. 
The last of  these is equivalent to ductile failure and will not be discussed further in 
this chapter. The field of  Coulomb behavior is the most important for upper crustal 
faulting whereas tensile strength and transitional-tensile behavior are most impor-
tant for near surface jointing or for cases of  small differential stress —

 — and large pore fluid pressures, Pf. We will start with Coulomb fail-
ure, the linear part of  the envelope.  

For Coulomb failure, only the σ1-σ3 part of  the Mohr’s circle matters be-
cause, in plane strain, planes parallel to σ2 will always fault before planes in other 
orientations (except for the cases where σ2=σ3 or σ2=σ1). At failure, the Mohr’s circle 
touches the failure envelope in two places (Fig. 6.8). Somewhat paradoxically at first 
glance, the plane that actually breaks is not the plane at 45° to σ1 which has the 
maximum shear stress, τmax, on it! Instead, there are two potential conjugate fault 
planes with their poles at angles of  θ = ±(45+φ/2) to σ1. φ, the angle of  internal 
friction, is the slope of  the Coulomb part of  the failure envelope and tan(φ) = μ = 

Δτ/Δσn is the coefficient of  internal friction. The complete equation for the 
Coulomb part of  the failure envelope is: 

Δσ = σ1 − σ3

MODERN STRUCTURAL PRACTICE 114 R. W. ALLMENDINGER © 2015-20

σ(n)

τ or σ(s)

2. C
oulomb failure

3. von Mises failure

1.

To

So

φ

σ1σ3 σ2

Figure 6.7 — The anatomy of  the 
failure envelope, plotted on axes 
of  shear stress (vertical axis) and 
normal stress (horizontal axis). 
The Mohr’s circle for stress is 
also shown.
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	 	 (6.7) 

Where So is the cohesion, essentially the shear strength of  a material under zero 
normal stress load. The reason why the plane with τmax does not fault is that it has 
much higher normal stress on it than the plane that does fault. We call this balance 
between shear stress and normal stress friction. 

Equation (6.7) is written in terms of  the normal and shear stress at failure 
but there are times when we want to know the Coulomb failure criterion in terms 
of  the principal stresses. There are several ways to achieve this result. For example, 
you could substitute Equations (5.25) into (6.7) or you can do a simple graphic con-
struction based on the Mohr’s Circle and Coulomb failure envelopes. The failure 
criterion in terms of  the principal stresses is (Eqn. 6.8): 

	      where          and     	 (6.8) 

Reactivation of  Pre-existing Planes of  Weakness 

The upper crust of  the earth is anything but homogeneous and isotropic: 
even a casual glance at any outcrop will reveal numerous pre-existing planes of  
weakness. The rocks are beset with fractures — both joints and faults — in a vari-
ety of  orientations and stratification itself  can commonly represent a significant an-

τ = σs = So + σnμ

σ1 = Co + Kσ3 K =
1 + sin ϕ
1 − sin ϕ

Co = 2So K
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σ(n)

σ(s)

50 100

50 φ

σ1σ3

2θ

φ

1

τmax

τ

σnTo

So

Figure 6.8 — Coulomb failure. The 
Mohr circle intersects the failure enve-
lope in two places (two red dots) so two 
different conjugate planes are equally 
likely to fracture in shear. φ is the angle 
of  internal friction and θ is the angle 
between the pole to the fault plane and 
σ1.
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isotropy. These pre-existing planes of  weakness commonly have little or no cohe-
sion and, because the fracture is already there, the coefficient of  static friction 
on the plane, μs, is different than the coefficient of  internal friction. Thus, the fail-
ure envelope is different for pre-existing fractures than for Coulomb failure. The 
formula for the failure envelope for slip on preexisting planes is: 

	 	 (6.9) 

As you can see in Figure 6.9, the Mohr’s Circle crosses the envelope for fail-
ure along pre-existing planes with zero cohesion but does not touch the Coulomb 
part of  the failure envelope for intact rock. Just because it crosses the pre-existing 
failure envelope, however, does not mean that failure will actually occur; the preex-
isting weak planes must lie within a range of  orientations defined by the intersec-
tions. In the case of  Figure 6.9, the poles to the preexisting planes must be oriented 
between 48.75 and 79.25° to σ1 (of  course, the doubles of  those angles are what’s 

τ = μsσn
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σ(n)

σ(s)

50 100

50
Coulomb Failure tan

–1
μs

2θ = 97.5°

2θ = 158.5°

σ1

σ1

σ3

range of orientations 
of reactivated faults

48.75°
79.25°

red dot 
corresponds 
to this plane

Figure 6.9 — Left: Mohr’s circle for stress and failure envelopes for preexisting frac-
tures (in red) and for Coulomb failure. The circle intersects the preexisting fractures 
envelope but not the Coulomb failure envelope. Planes with normal and shear stress 
that plot in the pink region will be reactivated. Right: the physical orientation of  σ1 
and the range of  orientation of  potential planes (in cross-section view so they appear 
as lines) that will be reactivated under these stress conditions in the shaded pink re-
gion. The red plane on the right corresponds to the red dot in the Mohr diagram on 
the left.
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plotted on the Mohr’s Circle). In the rectangular rock sample on the right hand side 
of  Figure 6.9, the regions where reactivation will occur are shown in pink color. If  
there are no weak planes with those orientations, then failure will not occur. If  
there are (e.g., the plane represented by the red dot), and loading occurs slowly 
enough, the failure on existing planes will relieve the stresses and prevent them 
from getting large enough to cause new faults to form. 

A geologist at the U.S. Geological Survey, James Byerlee (1978), summarized 
a large amount of  experimental data on rock friction and demonstrated that, to a 
first order, μs, is independent of  rock type (Fig. 6.10). For a wide variety of  rock 
types, the data show that: 

	  for  MPa   and    for  MPa	 (6.10) 

The only significant deviations in Byerlee’s data are rocks composed of  the clay 
minerals, illite, vermiculite, and montmorillonite. However, these clay minerals are 

τ = 0.85σn σn ≤ 200 τ = 0.5 + 0.6σn σn > 200
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Figure 6.10 — Ex-
perimental data 
summarized by 
Byerlee (1978) 
showing that μs is 
commonly relative-
ly independent of  
rock type.
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commonly found in fault gouge. This relationship has become known as Byerlee’s 
“Law” even though it is just an empirical relationship. 

The Effect of  Pore Fluid Pressure 

One of  the most important controls on the strength of  rocks in the upper 
crust is the pressure of  fluid in the pores of  the rocks. A fundamental property of  
fluids is that they cannot support any shear stress in any direction. Thus, every 
plane in a fluid is free of  shear stress and thus every direction in a fluid is a princi-
pal stress direction. This is known as a spherical state of  stress because the 
stress, or pressure, is the same in every direction. Because pressure in the pores of  
the rock pushes outward in every direction, it affects the normal stress but not the 
shear stress. Thus, we can write the effective stress tensor as: 

	 	 (6.11) 

where Pf is the pore fluid pressure. This has a profound effect on the deformation, 
most easily illustrated with the Mohr’s Circle (Fig. 6.11). The differential stress, σ1–

σ*ij =

(σ11 − Pf) σ12 σ13

σ21 (σ22 − Pf) σ23

σ31 σ32 (σ33 − Pf)
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Figure 6.11 — Mohr’s Circle 
and failure envelopes in the 
presence of  pore fluid pres-
sure, Pf (blue circles and ar-
rows). The initial stress state 
in the absence of  pore pressure 
is shown as light gray circles 
which do not intersect either 
failure envelope.
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σ3 or the diameter of  the circle, is unaffected by pore pressure but the entire circle is 
shifted to the left because the normal stresses are reduced. Thus a rock which exists 
in a stable stress state without pore pressure can be made to fracture, or slip on pre-
existing weak planes, simply by raising the pore fluid pressure. All of  our failure cri-
teria in Equations 6.7, 6.8, and 6.9 really ought to be written in terms of  effective 
normal stresses. For example, Coulomb failure should be written: 

	 	 (6.12) 

This process is known as hydraulic fracturing, sometimes referred to by 
the increasingly pejorative term “fracking”, the new f-word in environmental poli-
tics. Many natural processes can produce elevated pore pressure which can lead to 
natural hydraulic fracturing. Many human enterprises — water well improvement, 
oil and gas development, enhanced geothermal, carbon sequestration — also either 
rely on hydraulic fracturing (commonly referred to as stimulation), or inadver-
tently weaken the rock while storing fluids in the subsurface (waste water storage, 
carbon sequestration). Weakening of  pre-existing buried fault zones has been im-
plicated in human induced seismicity as you will see in the exercises. 

An important parameter for many studies is the pore fluid pressure ratio, 
λ, a term first introduced by Hubbert and Rubey (1959). This ratio is defined as: 

	      where     	 (6.13) 

where  is the average density of  the rocks. λ varies between 0 and 1; when it 
equals 1, the pore fluid pressure is high enough to support the weight of  the overly-
ing column of  rock. In natural settings such as the Gulf  Coast or the Barbados ac-
cretionary prism, values of  λ approaching 1.0 have been measured. Hydrostatic 
pressure is the weight of  a column of  fluid in the interconnected pores in a rock. 
In that case, λ = 0.4, assuming an upper crustal rock density of  2500 kg×m–3.  

Calculating the Normal and Shear Stress Vectors on any Plane 

Clearly, from all of  the preceding discussion, the normal and shear stress vec-

tors on a plane is a fundamental parameter to determine. In Chapter 5, we saw 

τ = σs = So + (σn − Pf) μ = So + σ*n μ

λ =
Pf

Plithostatic
Plithostatic = ρ̄rockgz

ρ̄rock
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how to calculate stress on a plane for a special case where the principal stresses 
were parallel to the axes of  our coordinate system. Here, we tackle the more gener-
al case where the principal stresses, and the plane, can have any orientation. This 
general case is depicted in Figure 6.12. 

There are three coordinate systems and thus two transformations. We start in 
our usual NED coordinate system because the orientations of  the principal stresses 
and planes are specified by their trend and plunge or strike and dip. The second 
coordinate system is defined by the principal stresses. The first transformation ma-
trix, a, is composed of  the direction cosines of  the principal stresses in the NED 
coordinate system (Fig. 6.12). The third coordinate system is defined by the pole to 
the plane, n (X′′1), the slip direction on the fault plane, s (X′′2), and null or b axis 
(X′′3), on the fault plane. The second transformation matrix, c, is given by the di-
rection cosines of  nbs in the principal stress coordinate system. Here are the steps 
to calculate the normal and shear stress orientations and magnitudes on the plane 
of interest: 
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Figure 6.12 — the coordinate 
systems used to calculate nor-
mal and shear stress on a plane 
(black great circle). The first is 
the North-East-Down (NED) 
system, the second is defined 
by the principal stresses (in 
red), and the third is the fault 
plane system (nbs) in blue.The 
direction cosines of  the new 
coordinate system in the old 
coordinate system define the 
transformation between the 
two. “t” is the traction vector 
on the plane, which is coplanar 
with the pole (n) and the slip 
vector (s) on the plane.
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1. Calculate the direction cosines of  the principal stresses, and the pole 
to the plane, in the NED coordinate system (i.e., X1X2X3). We assume 
that the trends and plunges of  the three principal stresses are already 
known, so we can just use the equations in Table 2.1 of  Chapter 2. 
Let’s assume the those trends and plunges are labeled trdσi and plgσi 
where “i” is the number of  the principal stress (e.g., trdσ1 is the trend 
of  σ1, etc.): 

	 	 (6.14) 

2. Transform the pole, n, into the principal stress coordinate system  
(X′1X′2X′3). We use our standard vector transformation to accomplish 
this: 

	 	 (6.15) 

where nj are the direction cosines of  the plane in the NED coordinate 
system and aij is the transformation matrix composed of  the direction 
cosines of  the principal stresses calculated in Equation (6.14). 

3. Calculate the traction vector, t, in the principal stress coordinate sys-
tem using Cauchy’s Law (Eqn. 5.23). Because we are in the principal 
stress coordinate system, the stress tensor has the form: 

	 	 (6.16) 

	 	 (6.17) 

Where n′j is the pole direction cosines calculated in Equation (6.15). 

4. Calculate b' and s' in stress coordinates from the following cross 
products (from Eqn. 2.8): 

aij =

cos (t rdσ1) cos (plgσ1) sin (t rdσ1) cos (plgσ1) sin (plgσ1)
cos (t rdσ2) cos (plgσ2) sin (t rdσ2) cos (plgσ2) sin (plgσ2)
cos (t rdσ3) cos (plgσ3) sin (t rdσ3) cos (plgσ3) sin (plgσ3)

ni′ = aijnj

σij′ =
σ1 0 0
0 σ2 0
0 0 σ3

ti′ = σij′ nj′ 
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	 	 (6.18) 

Because t′ is not a unit vector, b′ and s′ are also not unit vectors. We 
need to convert these to unit vectors by dividing by their magnitude 
in order to use them as the second transformation matrix, c. 

	 	 (6.19) 

Note that, unlike b′ and s′, we don’t need to divide n by it’s magni-
tude because n is already a unit vector. 

5. Transform t′ into the fault coordinate system using the transformation 
matrix, c. 

	 	 (6.20) 

In this coordinate system, t′′1 is the normal stress magnitude on the 
plane and t′′3 is the shear stress magnitude. We could do this step us-
ing a tensor transformation, but we have already calculated the trac-
tion vector so we do this simpler calculation that is easy to implement 
in a spreadsheet. 

6. Of  course, we want to know the orientations of  the shear stress vector 
(we already know the orientation of  the normal stress because it is 
parallel to the pole to the plane). We already know s′  in the principal 
stress system so we can use a reverse transformation from that system 
to the NED system using the transpose of  the transformation matrix, 
aT. Assuming that we have calculated  in Equation (6.19), the for-
mula for getting the orientation of  the shear stress on the fault plane 
is: 

b′ = n′ × t′ = [(n2′ t3′ − n3′ t2′ )(n3′ t1′ − n1′ t3′ )(n1′ t2′ − n2′ t1′ )]
s′ = n′ × b′ = [(n2′ b3′ − n3′ b2′ )(n3′ b1′ − n1′ b3′ )(n1′ b2′ − n2′ b1′ )]

cij =

n1′ n2′ n3′ 
b1′ 
b

b2′ 
b

b3′ 
b

s1′ 
s

s3′ 
s

s3′ 
s

ti′ ′ = cijtj′ 

̂s′ 
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	 	 (6.21) 

Note that the indices of  a have been switched in Equation (6.21) because it 
is a reverse transformation (old coordinates in terms of  new). 

7. The final step is to convert the direction cosines of  s from Equation 
(6.21) back into trend and plunge format. At this point, you have had 
lots of  practice with that but if  you have forgotten, check out Equa-
tions (2.11). 

The spreadsheet that accomplishes all of  these steps is shown in Figure 6.13. It has 
been set up for the same plane and principal stress orientations as shown in Figure 
6.12. When you enter principal stress orientations in a spreadsheet, make sure that 
the three axes are perpendicular to each other! This can be accomplished with a 
stereonet program. Programs such as MohrPlotter ensure that the axes are orthog-
onal by only allowing you to enter the truly independent parameters. This may 
seem to be a particularly tedious calculation, but as you will see in the Exercises, it 
is very powerful with a lot of  practical importance for serious issues of  our times. 

si = ajisj′ 
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Figure 6.13 — 
The spread-
sheet to calcu-
late the normal 
and shear 
stress on a 
plane of  any 
orientation, 
given a ran-
domly orientat-
ed set of  prin-
cipal axes.
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The Principal Stress Ratio 

There is one final issue that is important for understanding the relationship 
between stress and faulting: the importance of  σ2 relative to σ1 and σ3. This rela-
tionship is called the principal stress ratio and it takes the form of: 

	 	 (6.22) 

Remarkably enough, this ratio depends on nothing more that the direction cosines 
of  the second transformation matrix, c, as you can demonstrate to yourself  by cal-
culating R from c in Figure 6.14. R varies between 0 and 1; when R = 0, σ2 = σ1 
and when R = 1, σ2 = σ3. For planes that are not parallel to a principal stress, R can 
have a very significant effect on whether or not the plane is likely to be reactivated 
— because the magnitude (but not the orientation) of  the normal stress on the 
plane varies with R — as well as the orientation of  shear stress on the plane. Be-
cause R is a function of  the direction cosines of  c, it is the one additional parame-
ter that can be determined when fault planes or earthquake focal mechanisms are 
inverted for principal stress orientations. 

R =
σ2 − σ1

σ3 − σ1
=

c13c23

c12c22
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Figure 6.14 — The variation in orienta-
tion of  shear stress resolved on a plane 
with change in the parameter, R. The 
magnitudes of  σ1 and σ3 are held fixed 
and the only thing that varies is the mag-
nitude of  σ2. The fault plane and orienta-
tion and magnitudes of  the stresses are 
the same as in Figures 6.12 and 6.13. The 
blue dot at R = 0.6 is the actual value cal-
culated in Figure 6.13. In this case, the 
variation in shear stress on the plane is 
about 40°; with other geometries the 
variation can approach 90°.
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Although we will not do a full inversion for stress in this course, it is a com-

mon calculation amongst structural geologists and geophysicists. Some authors use 
a different formulation of  the principal stress ratio: 

	 	 (6.23) 

Thus, 𝚽 = 1–R. As we’re talking about inverting fault planes and earthquakes for 
stress, we should wrap up this section with a note of  caution. All methods to do this 
calculation have two assumptions in common: (a) that faults slip in the direction of  
maximum resolved shear stress on the plane, and (b) that the stress orientation and 
magnitude does not vary during the faulting. Both of  these assumptions require 
careful evaluation as there are many instances where they could be questioned. In a 
subsequent chapter, we will see a simpler approach to analyzing faults using in-
finitesimal strain. 

Φ =
σ2 − σ3

σ1 − σ3
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Exercises—Chapter 6 
All of  the following exercises should be done either in a spreadsheet or Matlab. You 
will need the MohrPlotter program that you downloaded last week for some of  the 
exercises. 

1. The map, below, is a modified version of  the Mystic Lake Quadrangle. The ob-
jective is to calculate the slip on the unnamed fault that crosses the image and 
has a strike and dip of  299, 38 (RHR). Coordinates of  three points are given, 
one on the fault plane and the others on the fold axis at the contact between 
Kmt and Kk in the hanging wall and the footwall. Southwest of  the fault, the 
fold axis has a trend and plunge of  056, 25 and to the northeast it is 042, 12. 
Construct a spreadsheet (or use Matlab) to calculate the slip on the fault as in 
Figure 6.5, using Equations 6.4 and 6.5. 
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2. Principal stresses are shown below in a North-East-Down coordinate system. 
They have the following values and their orientations are known in the stere-
onet, below. You can check your answer in MohrPlotter but must do the prob-
lem in a spreadsheet or Matlab: 

a. Calculate the orientation and magnitude of  the shear stress on the plane  
which is oriented 307, 50 as outlined in this chapter or following the steps in 
section 6.5 of  Allmendinger et al. (2012). You do not have to do the tensor 
transformation described in section 6.5.5; instead, transform the traction 
vector, t, into the fault plane coordinate system. Note: stresses, above, define 
a left-handed coordinate system but you want a right handed system! 

b. Part (a) uses a principal stress ratio of  0.5; try the problem again using values 
of  0.1 and 0.9 to see how that affects the orientation of  the shear stress on 
the plane. 

3. A geologist measures 8 conjugate faults in a region; the strikes and dips are list-
ed, below. All have normal displacement.  

090.0 68.6 S  083.1 66.0 S  
088.4 52.6 S  097.1 64.3 S  
304.4 68.3 N  311.6 58.0 N  
298.7 57.6 N  296.5 69.6 N  

a. Determine the orientation of  σ1, σ2, and σ3 from these data. Be as accurate 
as possible 

b. What are the angle and the coefficient of  friction for this data set? 
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N=pole to plane

s = shear 
stress on 
plane

σ₁ (=50.0)

σ₂ (=30.0)

σ₃ (=10.0)

fault plane

Stress Trend Plunge Magnitude

σ1 20 30 50
σ2 255.8 44.2 30
σ3 130 31 10
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4. The state of  Oklahoma has seen a 
very substantial increase in induced 
seismicity since 2005 as large vol-
umes of  waste water related to con-
ventional oil production have been 
reinjected into the subsurface. The 
map to the right shows known faults 
in red, injection wells in black target 
circles scaled by injection volume 
and earthquakes in blue. The red 
star labeled OKC is Oklahoma City. 
Earthquake and in situ stress mea-
surements suggest that, at 3 km 
depth (most of  the seismicity occurs 
between 2 and 4 km depth) σ1 is 
horizontal and trends 070, σ3 is also 
horizontal and trends 340, and σ2 is 
vertical and equal to the lithostatic 
load, for which you can assume a 
density of  2500 kg m–3. The faults 
are high angle reverse faults; their 
detailed dips are poorly know but for this problem we will assume that they dip 
70°. A downloadable data file with orientations of  about 40 faults can be found 
on the course web site. This problem will also require your use of  MohrPlotter. 
(a) The magnitudes of  the principal stresses, especially σ1 and σ3, are not well 

known. You should calculate σ2 assuming that it is equal to the lithostatic 
load. Assume that σ1 = 100 MPa and σ3 = 40 MPa. 

(b) Open MohrPlotter and enter the stresses and their orientations as described 
above in the stress tensor window (Calculate>Enter as Tensor). To complete 
the entry, press the Calculate button. In the MohrPlotter Window, enter the 
coefficient of  static friction of  0.85 which corresponds with Byerlee’s law for 
these depths. Choose File>Import Planes to read in the data file on fault 
plane orientations that you downloaded from the course Web site. You will 
probably want to turn off  plotting of  construction lines (Plot>Show Con-
struction Lines is unchecked). In the Inspector Palette (Window>Inspector), 
select the Envelopes & Points tab and make sure that the slip tendency 
checkbox is checked. Slip tendency will color the fault planes both in the 
stereonet view and the Mohr’s Circle view according to how likely the fault 
is to slip under these conditions: the warmer (i.e., more red) the color, the 
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more likely slip is to occur. Once you have done all that, does any plane ap-
pear that it will slip (and produce an earthquake) under these circumstances? 

(c) Now use the up-arrow next to the “P(fluid) =” text box to increase the pore 
fluid pressure gradually. Watch both the Mohr Circle plot and the stereonet 
view to see how the color of  the planes changes as the pore fluid pressure 
increases. When the pressure reaches hydrostatic (which you will need to 
calculate), stop increasing the pore fluid pressure. Save your plot to print and 
turn in. The program saves plots as .svg files that can be read by most mod-
ern vector graphics programs. SVG files can also be displayed and printed at 
high resolution by opening them in any web browser. 

(d) Which faults are highly susceptible to reactivation? What are their orienta-
tion(s) and how do they compare to the streaks of  seismicity visible in the 
map that accompanies the beginning of  this question? 

(e) The Nemaha fault which runs right next to Oklahoma City has some of  the 
largest injection wells located right along it’s trace. Given the length of  the 
fault, it would be capable of  generating a large, destructive earthquake. 
What is the likelihood that it will be reactivated and why? 

(f) A group of  large injection wells are located along faults immediately south 
of  the Kansas-Oklahoma border, and yet they do not appear to be associat-
ed with significant seismicity. Why is that the case and does that mean that 
companies can continue to inject waste water there with impunity? 
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Chapter 7 
Deformation and Infinitesimal Strain 

Introduction 
In this chapter, we turn our focus to deformation — the quantification of  

changes in shape and/or volume of  a rock, plus any associated translations and ro-
tations — that is the bread and butter of  most structural geologists. It will be a sig-
nificant departure from the topics of  the last two chapters in several fundamental 
ways: stress is an instantaneous property that exists only in the instance that the 

force is applied. Deformation, on the other hand, still exists in rocks hundreds of  
millions, or even billions, of  years after the associated stresses have dissipated. De-
formation is also cumulative: one can superpose many episodes of  deformation 
produced by completely unrelated geologic events. Finally, because deformation 
represents a change in shape or size, it is a comparison between two different states, 
an initial and a final state of  the material. Eventually, we will have to come to grips 
with the fact that these represent two possible reference states. Whenever we con-
sider the change in some property, we are really talking about mathematical deriva-
tives: local slopes along a curve of  a continuous function. In our case, we will be 
looking at the change in position, or the change in displacement, with respect to 
position. 
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Strain 

One Dimensional Measures of  Strain 

A structural geologist can make three different types of  measurements in or-
der to quantify strain: changes in line length, angles, or volumes. In the discussion 
that follows, we’ll use a capital “X” to indicate the coordinate of  a point in the ini-
tial state (the material coordinate system) and a small “x” for the final state 
(the spatial coordinates, implicitly at time, t). We’ll start with the change in 
length of  a line. As you can see in Figure 7.1, the initial and final lengths of  the line 
are: 

	      and     	 (7.1) 

Thus, the stretch, S can be defined as: 

	 	 (7.2a) 

	 	 (7.2b) 

The initial length, , in the denominator of  Equation (7.2a) means that the initial 
state is the reference state. In (7.2b),  occurs in the denominator so the final state 
is the frame of  reference. Another way to describe this deformation is by looking at 
the displacement, u, of  the end points of  the lines: 

ℓi = Xb − Xa = ΔX ℓf = xb − xa = Δx

S =
ℓf

ℓi
=

Δx
ΔX

s =
ℓi

ℓf
=

ΔX
Δx

ℓi

ℓf
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Xa Xb xa xb

ua

ub

Figure 7.1 — The change in length of  a line. The initial state is shown in 
blue with capital “X”s and the final state in red with small “x”s. ua and ub 
are the displacements of  the end points of  the line.
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	      and     	 (7.3) 

And the change in displacement, Δu, is: 

	 	 (7.4) 

Thus, the extension, E or e, can be defined as the change in length over the initial 
length (an initial state frame of  reference) or the final length (a final state frame of  
reference): 

	 	 (7.5a) 

	 	 (7.5b) 

Now let’s turn our attention to changes in angles and to do so we need to 
bring a second dimension which we will (temporarily) call Y and y. Consider a line 
initially perpendicular to the X direction that is displaced in the X direction by an 
amount that varies with the distance, or length, ΔY (Fig. 7.2). We can write: 

	      and      
	 	 (7.6) 

But, (Xb – Xa) = 0, so	  

We define the shear strain, γ, and the angular shear, ψ, as: 

ua = xa − Xa ub = xb − Xb

Δu = ub − ua = (xb − Xb) − (xa − Xa) = (xb − xa) − (Xb − Xa) = ℓf − ℓi = Δℓ

E =
ℓf − ℓi

ℓi
=

Δℓ
ℓi

=
Δu
ΔX

e =
ℓf − ℓi

ℓf
=

Δℓ
ℓf

=
Δu
Δx

ua = xa − Xa ub = xb − Xb

Δu = ub − ua = (xb − Xb) − (xa − Xa) = (xb − xa) − (Xb − Xa)
Δu = (xb − xa)
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Xb, Yb

xa, ya

xb, yb

ub

ua

ψ
Figure 7.2 — the change in angle of  a line that 
is originally perpendicular to the X-axis and 
the displacement, u.
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	      and     	 (7.7) 

As we will see a bit later, γ as defined in Equation 7.7 is actually known as the en-
gineering shear strain to distinguish it from a similar but distinct quantity 
known as the tensor shear strain. 

Three Dimensional Deformation 

Now it is time to extend these concepts to three dimensions. The ratios in 
Equations (7.2) and (7.5) are gradients of  change in position with respect to the 
new or old position and gradients of  displacement with respect to position. In an 
arbitrarily deformed body, these should vary in the three directions of  our Carte-
sian coordinate systems. That is: 

	      and     	 (7.8) 

where Dij is the deformation gradient tensor and Eij is the displacement 
gradient tensor. The equations in (7.8) are referenced to the initial state and, as 
you might expect, there are equivalent forms referenced to the final state. We need 
to use partial derivatives because the displacement is a function of  gradients along 
the three axes of  the coordinate system. 

γ =
Δu
ΔY

ψ = tan−1 ( Δu
ΔY )

Δx
ΔX

= lim
∂xi

∂Xj
= Dij

Δu
ΔX

= lim
∂ui

∂Xj
= Eij
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Figure 7.3 — The deformation of  line PQ 
in undeformed state (in blue) to P′Q′ in the 
final state (in red).
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Figure 7.3 shows a more general case. The difference in displacement vectors 
is: 

	 	 (7.9) 

Thus, we can write: 

	      or     	 (7.10) 

We can integrate the right side of  equation (7.10) to yield a general expression for 
the displacement at any position: 

	      ⇒     	 (7.11) 

where u is the displacement vector at position X, and t is a constant of  integration 
that represents the displacement of  a point at the origin of  the coordinate system. 
This equation holds as long as the strain is homogeneous; that is, Eij is the same 
throughout the deformed body. Because Equation (7.11) represents three linear 
equations, it follows that a line that is straight before deformation will also be straight after the 
deformation; likewise parallel lines in the initial state will remain parallel in the final state. 

Just as we did for the displacement gradient tensor, the relationships depicted 
in Figure 7.3 can also be used to derive an expression for mapping points in the ini-
tial state into the final state: 

	 	 (7.12) 

Once again, assuming homogeneous strain, we can integrate both sides of  the 
equation to get: 

	      ⇒     	 (7.13) 

Δui = Qui − Pui =
∂ui

∂Xj

QXj −
∂ui

∂Xj

PXj =
∂ui

∂Xj
(QXj − PXj) =

∂ui

∂Xj
ΔXj

Δui =
∂ui

∂Xj
ΔXj = EijΔXj dui =

∂ui

∂Xj
d Xj = Eijd Xj

∫ dui = ∫ Eijd Xj ui = ti + Eij Xj

Δxi = Qxi − Pxi =
∂xi

∂Xj

QXj −
∂xi

∂Xj

PXj =
∂xi

∂Xj
(QXj − PXj) =

∂xi

∂Xj
ΔXj = DijΔXj

∫ d xi = ∫ Dijd Xj xi = ci + Dij Xj
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Where x is the new position, X is the old position, and c is a constant of  integra-
tion that represents the coordinates of  a point initially at the origin of  the coordi-
nate system. 

Recall that a second order tensor is a linear vector operator. The displace-
ment gradient tensor relates the displacement of  a point to its position, whereas the 
deformation gradient tensor relates the position in the initial state to the position of  
the same point in the final state (Fig. 7.4). If  we know the tensor, then the displace-
ment of  the point and it’s new position can be calculated from Equations (7.11) and 
(7.13). All of  the equations that we have developed so far hold for any 
magnitude of  deformation. To understand the nature of  these tensors, and ex-
plore some common applications, some simplifying assumptions are in order. 

Infinitesimal Strain 

If  we assume that the distortions are small, a number of  simplifications can 
be made. At the most basic level, a small or infinitesimal strain assumption 
permits us to consider that the initial and final states are identical, thus cutting in 
half  the number of  tensors to worry about. Additional benefits will become appar-
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(X1, X2)

(x1, x2)

u1

u2

X2, x2

X1, x1

Figure 7.4 — The displacement of  points in an initial circle depend on their initial posi-
tions. Overall, the circle deforms to an ellipse. Note that the arrows represent finite dis-
placement and not the path that the point follows.



CHAPTER 7 INFINITESIMAL STRAIN

ent, below, but first let’s take a closer look at the components of  the displacement 
gradient tensor, Eij. 

It will probably come as no surprise the values along the principal diagonal, 
E11, E22, and E33 represent the extensions of  lines that are parallel to the corre-
sponding axes. The off-diagonal components are more interesting, which will be 
illustrated by examining a special case in two dimensions (Fig. 7.5). From the geom-
etry, you can see that: 

	 	 (7.14) 

and by making our infinitesimal strain assumption, you can see that ΔX1 ≫ Δu1. 
Thus, we can write that: 

	 	 (7.15) 

For very small angles, the tangent of  an angle is equal to the angle itself  measured 
in radians, so we can further write: 

	 	 (7.16) 

Thus E21 is the counterclockwise rotation of  a line parallel to the X1 axis towards 
the X2 axis. Likewise, E12 would be the clockwise rotation of  a line parallel to the 
X2 axis towards the X1 axis. The first subscript indicates the axis that the rotation is 
towards and the second subscript indicates the axis to which the line is, initially, 

tan θ =
Δu2

ΔX1 + Δu1

tan θ ≈
Δu2

ΔX1

θ ≈
Δu2

ΔX1
=

∂u2

∂X1
= E21
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Figure 7.5 — The deformation of  two lines 
originally perpendicular to the axes of  the 
coordinate system.
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parallel. Note that the E21 + E12 combined equal the change in angle, or shear strain, 
of  two lines initially at 90° to each other. They are tensor shear strain compo-
nents and each is equal to one-half  of  the engineering shear strain of  Equation 
(7.7). 

There is one more thing to learn about the displacement gradient tensor 
and, by extension, the deformation gradient tensor as well. Again, we’ll examine a 
special case (Fig. 7.6). As in Figure 7.5, there are two vectors in the initial, unde-
formed configuration that are parallel to the coordinate axes. This time, however, 
we introduce a pure rotation by a small angle, φ, with no deformation; that is, the 
vectors P′Q ′ and P′M ′  are still perpendicular after the rotation. You can see that: 

 	      and     	 (7.17) 

Likewise, E22 = 0 but E12 = –φ because it is also a counterclockwise rotation even 
though positive E12 should be a clockwise rotation. Thus our two dimensional dis-
placement gradient tensor for the case of  pure rotation is: 

	 	 (7.18) 

We’ve just learned two really important things: First, the displacement gradient 
tensor is an asymmetric tensor (because –φ ≠ φ), and second, the tensor in-
cludes both strain and rotation. 

Any asymmetric matrix can be additively decomposed into a symmetric ma-
trix and an antisymmetric matrix. An antisymmetric matrix has zeros along the 

E11 =
Δu1

ΔX1
= 0 E21 =

Δu2

ΔX1
= tan ϕ ≈ ϕ

Eij = [0 −ϕ
ϕ 0 ]
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tion of  two perpendicular vec-
tors parallel to the axes of  the 
coordinate system.
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principal diagonal and the values below the principal diagonal must be the negative 
of  those above the principal diagonal. For the displacement gradient tensor, we can 
write: 

	 	 (7.19) 

where 

	      and     	 (7.20) 

εij is the symmetric infinitesimal strain tensor  and ωij is the antisymmetric ro-
tation tensor or axial vector. ωij can be turned into a rotation vector, ri, as fol-
lows: 

	 ,   ,   and   	 (7.21) 

the magnitude of  r gives the amount of  rotation (in radians) and the unit vector, , 
gives the orientation of  the rotation axis. Equation (7.19) basically says that defor-
mation is equal to a strain plus a rotation, thought that is strictly true only for small 
strains. 

Like any symmetric tensor, the infinitesimal strain tensor has principal axes, 
found by solving the eigenvalue problem, and invariants. The first invariant of  the 
infinitesimal strain tensor: 

	 	 (7.22) 

is the infinitesimal volume strain or the dilatation. The infinitesimal strain el-
lipsoid is defined by the equation: 

	 	 (7.23) 

where S1, S2, and S3 are the stretches along the principal axes and λ1, λ2, and λ3 are 
the quadratic elongations. If  the intermediate principal stretch is 1, the deforma-
tion is two dimensional and we refer to it as plane strain. 

Eij = εij + ωij

εij =
1
2 (Eij + Eji) ωij =

1
2 (Eij − Eji)

r1 =
−(ω23 − ω32)

2
r2 =

−(−ω13 + ω31)
2

r3 =
−(ω12 − ω21)

2

̂r

Iε = ε11 + ε22 + ε33 = ε1 + ε2 + ε3

x2
1

(1 + ε1)2 +
x 2

2

(1 + ε2)2 +
x2

3

(1 + ε3)2 =
x2

1

S2
1

+
x 2

2

S2
2

+
x2

3

S2
3

=
x2

1

λ1
+

x 2
2

λ2
+

x2
3
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= 1
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Just like any symmetric tensor, the infinitesimal strain tensor can be repre-
sented by a Mohr’s Circle construction (Fig. 7.7). We start with the axes of  the in-
finitesimal strain ellipse parallel to the axes of  the coordinate system: 

	 	 (7.24) 

And transform the tensor by a rotation of  θ about the intermediate principal axis 
(Fig. 7.7a). The transformation matrix is: 

	 	 (7.25) 

The tensor transformation equation is: 

	 	 (7.26) 

So, the infinitesimal strain tensor in the new coordinate system is: 

εij =
ε1 0 0
0 ε2 0
0 0 ε3

aij =
cos θ 0 sin θ

0 1 0
−sin θ 0 cos θ

εij′ = aikajlεkl
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θ
X1, x1

X3, x3

X′1
, x′1X′3

, x′3

ε
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2θθ
ε1ε3 ε′11

ε′13
maximum shear 
strain at 45° to 
principal axes

(a) (b)

Figure 7.7 — The construction of  the Mohr’s Circle for infinitesimal strain. (a) The in-
finitesimal strain ellipsoid with the old coordinate system in blue and the new, primed co-
ordinate system in red, rotated about the intermediate principal axis by an angle θ. (b) the 
Mohr’s Circle for infinitesimal strain. Elongations are plotted on the horizontal axis and 
the shear strain on the vertical axis.
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	 	 (7.27) 

And the equations for Mohr’s Circle for infinitesimal strain (Fig. 7.7b) are: 

	 	 (7.28) 

One of  the most important features of  infinitesimal strain, which is made es-
pecially clear by the Mohr’s Circle construction, is that the maximum in-
finitesimal shear strain is oriented at 45° to the principal axes of  strain. 
This has profound implications for our practical study of  common structures, from 
brittle to ductile shear zones (Fig. 7.8).  

εij′ =
ε11′ 0 ε13′ 
0 ε2 0

ε31′ 0 ε33′ 
=

(ε1 cos2 θ + ε3 sin2 θ) 0 ((ε3 − ε1) cos θ sin θ)
0 ε2 0

((ε1 − ε3) cos θ sin θ) 0 (ε1 sin2 θ + ε3 cos2 θ)

ε11′ =
(ε1 + ε3)

2
+ (ε1 − ε3)

2
cos 2θ

ε13′ =
γ
2

= (ε1 − ε3)
2

sin 2θ
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ε3 ε1

45°

45°

ε3 ε1

(b)(a) (c)

Figure 7.8 — Three geological/geophysical examples demonstrating the importance of  the 
fact that the principal axes of  infinitesimal strain are at 45° to the planes of  maximum 
shear strain. (a) a heterogeneous ductile shear zone in granitoid rocks, (b) sigmoidal exten-
sion fractures in a brittle shear zone, (c) P & T axes for an earthquake or fault slip analysis. 
Despite their names, P and T axes are infinitesimal principal strain axes.
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Some Geological Applications 
Many structural geology problems we face break the assumptions of  in-

finitesimal strain and thus require a more complicated analysis. However, the fields 
of  active tectonics and brittle fault analyses are of  significant importance for mod-
ern structural geology and are amenable to an infinitesimal strain approach. That 
is because the deformation accrues over a short, commonly geologically instanta-
neous, period of  time and thus is very small in magnitude. 

Strain from GPS 

The Global Positioning System (GPS) has revolutionized earth sciences in 
the last 25 years by providing geologists and geophysicists with real time monitoring 
of  active deformation. Modern continuous geodetic GPS provides sub-centimeter 
resolution of  the displacement of  monuments or stations relative to a stable refer-
ence frame. Because the changes in displacements measured are on the order of  
centimeters between stations separated by tens of  kilometers, the deformation mea-
sured by GPS certainly qualifies as infinitesimal. GPS data present a common cir-
cumstance: we know displacements and want to calculate the strain rather than 
knowing the strain tensor and calculating displacements at different points. 

We start with a simpler task: calculating the one-dimensional extension given 
a transect of  GPS stations. Recall that, from Equation (7.7), the one dimensional 
extension is just: 

	  E =
Δu
ΔX
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Figure 7.9 — Plotting displacement against 
position in a GPS transect in order to de-
termine the 1D extension. Because the slope 
is positive, the data represent an elongation; 
a negative slope would indicate shortening 
in the direction of  the transect.
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Therefore, one can plot the displacement at a station on the Y-axis against the posi-
tion of  the station on the X-axis and fit a straight line (for homogeneous strain) or a 
curve (for heterogeneous strain) to the data points as in Figure 7.9. The equation 
for a straight line on the graph is: 

	 	 (7.29) 

where t is the intercept on the vertical axis. Note how similar this equation is to 
Equation (7.11). 

To get to the point of  making a graph like that shown in Figure 7.9, you will 
probably have to do several intermediate steps, which we have the background to 
do. It is unlikely that the GPS displacement (or velocity) vectors, or the transect, 
will be parallel to North or East. While you could eyeball the best orientation of  the 
transect and then calculate the distances between each station, there is a more ele-
gant way. First, calculate the orientation of  the mean GPS vector just like we did in 
Chapter 2. Then rotate the coordinate system so it is parallel to the mean vector 
and transform both the station positions and the displacement vectors into this new 
coordinate system (Fig. 7.10). The two dimensional transformation matrix for this 
operation will be: 

	 	 (7.30) 

And the vector and station transformations will be, respectively: 

u = t + EX

aij = ( cos θ cos (90 − θ )
cos (90 + θ ) cos θ ) = ( cos θ sin θ

−sin θ cos θ)
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Figure 7.10 — Map view of  GPS vectors 
and a coordinate transformation so 
that the new coordinate system is par-
allel to the GPS mean displacement 
vector.
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	      and     	 (7.31) 

Now, you can plot the component of  the displacement parallel to X′1, u′1, against 
the station’s X′1 coordinate (ignoring the X′2 components completely), as in Figure 
7.9. Thus, expanding Equation (7.31) for those components only, we get: 

	      and     	 (7.32) 

To get the two (or three) dimensional strain from displacement vectors re-
quires more involved methods. Recall that the multidimensional equivalent of  
Equation (7.29) is equation (7.11) which is repeated here: 

	  

We know the displacement vectors, u, and the positions of  the stations, X. We 
don’t know Eij or ti; in two dimensions (ignoring the vertical component of  the GPS 
data), there are thus six unknowns: E11, E12, E21, E22, t1, and t2. Each station and 
displacement vector pair provides two equations (one for u1 and one for u2), so in 
two dimensions, we need three non-collinear stations and displacements to solve for 
our six unknowns. You can visualize the three stations defining a triangle with a cir-
cle inscribed in it; when the points are displaced, the triangle becomes distorted 
and the inscribed circle becomes a strain ellipse (Fig. 7.11). 

To calculate the unknowns, we need to gather them into a single matrix: 

ui′ = aijuj Xi′ = aij Xj

u1′ = a11u1 + a12u2 X1′ = a11X1 + a12X2

ui = ti + Eij Xj
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X xu
Figure 7.11 — In 2D, three sta-
tions and displacement vectors 
are necessary to define the 
strain produced by the dis-
placements. The strain here is 
finite (i.e., large), but the same 
principle holds for infinitesimal 
deformations like that mea-
sured by GPS.
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	 	 (7.33) 

This equation is written, not for three stations but for n stations and vectors — 
more information than we actually need. That’s okay, though, because with data 
redundancy, we can calculate the uncertainties using a least squares approach. 
Solving Equation (7.33) is non-trivial because it requires calculating the inverse of  
the large matrix full of  zeros, ones, and X’s. The techniques required to do this — 
generally referred to as inverse methods — are extremely powerful and form the 
basis of  many very important calculations in earth sciences and other fields but are 
beyond the scope of  this book. If  you want to be a modern earth scientist, you will 
probably eventually want to learn these methods. 

Analyzing Brittle Faults 

The upper crust of  the earth is full of  faults — discontinuous deformation 
features. If  we assume that the faults are small relative to the volume of  earth that 
contains them, we can analyze them using infinitesimal strain assumptions. The 
simplest approach is to leverage the fact that the plane of  maximum shear strain is 
at 45° to the principal axes of  infinitesimal strain. In fault slip (and earthquake) 
analysis, the principal infinitesimal shortening axis is referred to by the letter “P” 
and the principal elongation axis with the letter “T” (Fig. 7.8c) . Faults are particu3 -
larly easy to analyze because there is no movement perpendicular to the slip vector 
and thus each individual fault represents deformation in plane strain. The basic 
geometry is shown in Figure 7.12. 

1u1
1u2
2u1
2u2
⋯
⋯
nu1
nu2

=

1 0 1X1
1X2 0 0

0 1 0 0 1X1
1X2

1 0 2X1
2X2 0 0

0 1 0 0 2X1
2X2

⋯ ⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯
1 0 nX1

nX2 0 0
0 1 0 0 nX1

nX2

t1
t2

E11
E12
E21
E22

 Because these letters are short for “Pressure” and “Tension”, legions of  geologists have thought that these represent 3

principal stress axes. They do not. They are infinitesimal strain axes which may, or may not, be parallel to the princi-
pal stresses! See McKenzie (1969) for proof.
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If  one is only interested in calculating the orientations of  the individual P 
and T axes, the calculation is quite straightforward, involving nothing more than 
vector addition and subtraction. Figure 7.13 is a view perpendicular to the move-
ment plane so that one sees the fault plane edge on and it appears as a line. The 
unit pole vector, , points down into the footwall and the unit slip vector, , also 
points down into the lower hemisphere (i.e., we are using a NED coordinate sys-
tem). We need some way to specify the sense of  slip, which we will do with a scalar 
value, k: for faults with a normal component of  slip the hanging wall moves down 

n̂ ŝ
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Figure 7.12 — Anatomy of  a fault plane. Right side: 3D perspective view 
showing the movement plane which contains the pole to the fault and the 
slickenside (or other movement indicator on the fault). Left side: lower 
hemisphere view of  the same geometry. Arrow at the intersection of  the 
fault and movement planes shows the movement of  the hanging wall.
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Figure 7.13 — Edge-on view of  the fault 
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a simple vector addition because a single 
fault is a plane strain deformation. Note 
that the vector addition yields vectors which 
have a magnitude of  square root of  two be-
cause they are 45°-45°-90° right triangle.
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and k = 1; for those with a reverse component, k = –1, because the hanging wall 
moves up whereas down in positive. Thus, we can write: 

	      and     	 (7.34) 

The square root of  two in the denominator is necessary to ensure that P and T are 
unit vectors. 

The preceding analysis is fine if  we are concerned about calculating P and T 
axes of  single faults, but what if  we want to calculate the strain produced by a 
group of  faults? For this case, we introduce a new concept from earthquake seis-
mology, the scalar seismic moment, Mo, and its sibling, the geometric mo-
ment, Mg: 

	      and     	 (7.35) 

where A is the surface area that slipped,  is the average displacement, and μ is the 
shear modulus. The moment tensor is the sum of  the scalar moment times the 
dyad product of  the unit slip and normal vectors: 

	 	 (7.36) 

where ui is the unit slip vector and nj the unit normal (or pole) vector. This equation 
is for the geometric moment tensor. If  you calculated uinj for a single fault and cal-
culated the eigenvalues and eigenvectors, it would give us the P and T axes, just like 
Equation (7.34). It turns out that our old friend, the displacement gradient tensor, is 
equal to (Molnar, 1983): 

	 	 (7.37) 

The summation of  moment tensors of  all of  the faults in the data set is a simplifica-
tion afforded us by the infinitesimal strain assumption. When the faults are large 
enough to cause finite strain, you can no longer add the tensors together. Instead, 
matrix multiplication is involved as we will see in a subsequent chapter. 

Pi =
ni + ksi

2
Ti =

ni − ksi

2

Mo = As̄μ Mg = As̄

s

Mij =
n_ faults

∑
k=1

Mguinj

Eij =
∑ Mguini

V
=

Mij

V
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Eij of  Equation (7.37) is, of  course, an asymmetric tensor and in infinitesimal 
strain can be additively decomposed into a symmetric strain and antisymmetric ro-
tation tensors: 

	 	 (7.38) 

The symmetric part of  (7.38), before being divided by 2V  is Kostrov’s (1974) sym-
metric seismic moment tensor. When you see a moment tensor reported in an 
earthquake catalog, it is Kostrov’s symmetric tensor and the infinitesimal strain, εij 
in that case is: 

	 	 (7.39) 

If  you don’t have any scaling information — that is, you don’t know Mo, Mg, V, or μ 
— you can still add up the moment tensors and get the principal axes of  the group 
of  faults assuming that each fault contributes equally to the overall strain in the re-
gion. If, however, some faults (or earthquakes) are markedly larger than others, that 
is a poor assumption; the moment tensor sum is always dominated by the largest 
features.  

Eij = εij + ωij =
∑ Mg (uinj + ujni)

2V
+

∑ Mg (uinj − ujni)
2V

εij =
∑ Mo (uinj + ujni)

2Vμ
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Exercises—Chapter 7 
All of  the following exercises should be done either in a spreadsheet or Matlab. You 
will need the EigenCalc program that you downloaded last week for some of  the 
exercises. All of  the exercises have datasets that can be downloaded from the course 
web page. 

1. Calculate the 1D coseismic strain for the 1995 Antofagasta earthquake (figure, 
above), using the GPS data from Klotz et al. (1999). The data will be provided 
to you in a spreadsheet. Carry out the following tasks: 
(a) Determine the average or mean vector that characterizes, as best possible, 

the overall orientation of  the vectors. 
(b) Determine the two-dimensional transformation matrix, aij, needed for a new 

coordinate system where the X′1 axis is parallel to the mean vector direction. 
(c) Transform the East and North coordinates of  the GPS stations, vectors, and 

errors into the new coordinate system. 
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(d) Plot the u′1 component of  each displacement vector, and its error, against the 
X′1 component of  the station position. 

(e) Fit a straight line to approximately linear segments of  the resulting curve us-
ing the relations or built in functions from the previous sections. 

2. Fifteen measurements of  faults and their slickensides are given in the table be-
low. Calculate the P and T axes of  the individual faults and then calculate an 
unweighted moment tensor summation. Use EigenCalc to determine the prin-
cipal axes of  infinitesimal strain. In the downloadable spreadsheet, the sense of  
slip (SOS) has been specified using k=+1 for normal faults and k= –1 for re-
verse faults as described in the text (Eqn. 7.34). 

3. You’ll be given a spreadsheet containing 57 foreshocks of  the Mw 8.2 Pisagua 
earthquake (northern Chile March-April 2014) which have nodal planes and 
scalar moments.  
(a) Calculate the moment tensor sum from Eqn.  7.39 (ignoring V and μ) for the 

foreshocks and use EigenCalc to determine the orientation of  the principal 
axes.  

(b) Plot the P and T axes of  the individual events in Stereonet and compare 
them to the moment tensor sum that you did in part (a). 

Fault Plane Slickensides Sense
Strike Dip Direction Trend Plunge of slip

149.5 47.2 W 164.4 15.4 Normal
127.6 60 S 134.6 11.9 Normal
189.4 34.6 W 349.6 13.1 Thrust

328 42.5 E 335.3 6.6 Normal
22.9 50.2 E 182 23.2 Thrust

108.8 31.1 S 169.2 27.7 Normal
184.6 39.8 W 317.1 31.6 Thrust
93.7 65 S 269.6 8.8 Normal

297.6 64.1 N 300.2 5.4 Thrust
272.5 34.5 N 284.4 8 Thrust
151.6 58.1 W 154.9 5.3 Normal
302.7 47 N 105.3 17.7 Normal
349.4 33.7 E 145.2 15.3 Thrust
90.9 71.1 S 96 14.6 Thrust

189.7 36.6 W 247.9 32.3 Thrust
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Chapter 8 
Large Strains 

Introduction 
Most geological deformation, whether distorted fossils or fold and thrust belt 

shortening, accrues over a long period of  time and can no longer be analyzed with 
the assumptions of  infinitesimal strain. Fortunately, these large, or finite strains 
have the same starting point that infinitesimal strain does: the deformation and dis-
placement gradient tensors. However, we must clearly distinguish between gradi-

ents in position or displacement with respect to the initial (material) or to the final 
(spatial) state and several assumptions from the last Chapter — small angles, addi-
tion of  successive phases or steps in the deformation — no longer hold. Finite 
strain can get complicated very quickly with many different tensors to worry about. 
Most of  our emphasis here will be on the practical measurement of  finite strain 
rather than the details of  the theory but we do have to review a few basic concepts 
first, so that we can appreciate the differences between finite and infinitesimal 
strain. Some of  these differences have a profound impact on how we analyze de-
formation. 
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Comparison to Infinitesimal Strain 

A Plethora of  Finite Strain Tensors 

There are lots of  finite strain tensors and they come in pairs: one referenced 
to the initial state and the other referenced to the final state. The derivation of  
these tensors is usually based on Figure 7.3 and is tedious but straightforward; we 
will skip the derivation here but you can see it in Allmendinger et al. (2012) or any 
good continuum mechanics text. The first tensor is the Lagrangian strain ten-
sor: 

	 	 (8.1) 

where Eij is the displacement gradient tensor from the last Chapter. Recall that the 
infinitesimal strain tensor, ε, is (from Eqn. 7.20): 

	 	 (8.2) 

This highlights the first distinction between infinitesimal and finite strain: the for-
mer ignores the higher order term, . Expansion of  the different terms in 

Equation (8.1) follows the usual summation convention rules. For example, to ex-
pand for L11, we write: 

	 	 (8.3) 

In contrast,	  

Just for practice, let’s also expand for L13: 

	 	 (8.4) 

Lij =
1
2 [ ∂ui

∂Xj
+

∂uj

∂Xi
+

∂uk

∂Xi

∂uk

∂Xj ] =
1
2 [Eij + Eji + EkiEkj]

εij =
1
2 (Eij + Eji)

EkiEkj

L11 =
1
2 (E11 + E11 + E11E11 + E21E21 + E31E31) = E11 +

1
2 (E2

11 + E2
21 + E2

31)

ε11 =
1
2 (E11 + E11) = E11

L13 =
1
2 (E13 + E31 + E11E13 + E21E23 + E31E33)
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As before, the higher order non-linear term on the right hand side of  the equation 
is ignored in infinitesimal strain. The Eulerian finite strain tensor, , is the 

same as the Lagrangian strain tensor but referenced to the final state: 

	 	 (8.5) 

where eij is the displacement gradient tensor referenced to the final state. 

Alternatively, we can start with the deformation gradient tensor, Dij (Eqns. 
7.8 and 7.13) and derive the Green deformation tensor: 

	 	 (8.6) 

referenced to the initial or material state. The equation (8.6) expansion for C11 and 
C13 (as before) is: 

	 	 (8.7a) 

	 	 (8.7b) 

And, finally, the Cauchy deformation tensor, , is similar to Equation (8.6), 

but referenced to the final or spatial state: 

	 	 (8.8) 

where dij is the deformation gradient tensor referenced to the final state. For a vec-
tor parallel to the X1 axis, the quadratic elongation, λ, is equal to the square of  the 
stretch, S, is equal to C11. 

	 	 (8.9) 

And, a line parallel to the x1 axis in the final state: 

	  

Lij

Lij =
1
2 [ ∂ui

∂xj
+

∂uj

∂xi
+

∂uk

∂xi

∂uk

∂xj ] =
1
2 [eij + eji + ekiekj]

Cij =
∂xk

∂Xi

∂xk

∂Xj
= DkiDkj

C11 = D11D11 + D21D21 + D31D31 = D2
11 + D2

21 + D2
31

C13 = D11D13 + D21D23 + D31D33

Cij

Cij =
∂Xk

∂xi

∂Xk

∂xj
= dkidkj

λ(1) = S2
(1) = C11 = 1 + 2L11

1
λ(1)

=
1

S2
(1)

= C11 = 1 + 2L11
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These tensors are not all independent of  each other. The relations between 
them are: 

	 	 (8.9) 

and  

	 	 (8.10) 

Where  is the Kronecker delta that represents the components of  the identity 

matrix. All of  these tensors are symmetric. Thus  and   have the same princi-
pal axes, Likewise,  and  also have the same principal axes, which are different 
from those for  and . The difference in orientation between the principal axes 
of   and  is the amount of  rotation during the deformation. 

Multiple Deformations 

In infinitesimal strain, the displacement gradient tensors are simply added 
together to sum the total deformation as we saw in the case of  the moment tensor 
for earthquakes or faults in the previous chapter (Eqn. 7.37): 

	 	 (8.11) 

Let’s see how the finite strain version compares. Using the deformation gradient 
tensor for the first deformation, we get: 

	 	 (8.12) 

The final state of  the first deformation is the initial state of  the second deformation 
— that is,  — so for the second deformation, we can write: 

	 	 (8.13) 

We know that , so the expansion of  the  term in Equation (8.13) is: 

	 	 (8.14) 

Lij =
1
2 (Cij − δij)

Lij =
1
2 (δij − Cij)

δ ij

Lij Cij

Lij Cij

Lij Cij

Lij Lij

totalE = ∑ nE =1 E +2 E + ⋯ +n E

1dx = 1DdX

2dX = 1dx

2dx = 2D2dX = 2D (1DdX) = 2D1DdX

E = D − I 2D1D

2D1D = (2E + I) (1E + I) = 1E + 2E + (2E1E) + I
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So, superposing deformations really has a higher order term, , that is ig-
nored in the infinitesimal strain summing of  displacement gradient tensors. This 
term is a matrix multiplication which is non-commutative and thus, because 

, the order in which the strain and/or rotation occurs makes 
a difference in the final result. Figure 8.1 illustrates this important principle for 
a stretch and a rotation. 

Mohr’s Circle for Finite Strain in the Deformed State 

The Mohr Circle construction for the Cauchy deformation tensor (Eqn. 8.8) 
is particularly useful in practical strain analysis. This construction is derived, just 
like all Mohr’s Circles, by rotating the coordinate system about a principal axis and 
you can see the derivation in Allmendinger et al. (2012). The equations are given 
by: 

	      and      	 (8.15) 

You will more commonly see these written as: 

	      and     	 (8.16) 

(2E1E)

2E1E ≠ 1E2E

C11′ =
(C1 + C3)

2
+ (C1 − C3)

2
cos 2θ C13′ =

(C1 − C3)
2

sin 2θ

λ′ = (λ1′ + λ3′ )
2

+ (λ1′ − λ3′ )
2

cos 2θ γ ′ =
γ
λ′ 

= (λ1′ − λ3′ )
2

sin 2θ
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(a) (b)

Figure 8.1 — The order in which strains and rotations occur make a difference! (a) A 
horizontal stretch of  2  followed by a rotation of  45°. (b) a rotation of  45° followed by 
a horizontal stretch of  2. In both cases, the initial square is shown in pink.
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where 	  

Figure 8.2 shows a finite strain ellipse on the left and the corresponding Mohr’s 
Circle construction on the right. This Mohr’s Circle construction is very useful, 
particularly where the deformation is in plane strain. 

Progressive Strain 

In Figure 8.2a, you see the finite strain ellipse (in light red) superimposed on 
the initial circle (in light blue). The points of  intersection between the ellipse and 
circle define lines that are currently at the same length as they were when they 
started out; we call these lines of  no finite elongation (LNFE) and they are 
symmetric with respect to the principal axes of  strain. You can imagine making the 
same sort of  diagram for the infinitesimal strain ellipse, which would be only very 
slightly different from the initial circle. In that case, there would be two lines of  no 
infinitesimal elongation (LNIE) and they would be at 90° to each other. These 
concepts allow us to understand how strain progresses with time (Fig. 8.3). 

λ′ =
1
λ

=
1
S2
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λ′1 λ′3

γ′= γ/λ

2θ′a

2θ′b

ψmax

1 2 3S1 = √λ1

S3 = √λ3

a

a′

b

b′

θ′a

θ′b

ψmax

(a) (b)

b′

a′
2θ′LNFE

Figure 8.2 — (a) the finite strain ellipse (red) and the initial circle with radius of  one (blue). 
Two lines are shown in the undeformed (a and b) and deformed (a′ and b′) state. Because 
the initial length is 1, the major and minor axes of  the ellipse are S1 and S3, respectively. 
Line a′ is drawn in the orientation of  the line that experiences the maximum shear strain 
in the body. (b) The Mohr’s Circle for finite strain in the deformed state. Lines a′ and b′ are 
plotted in their correct positions. Note that the angular shear is measured by drawing a 
line for the origin of  the plot to the point on the circle, with the maximum angular shear 
determined by the line from the origin that is tangent to the circle (line a′). The orientation 
of  a line of  no finite elongation (LNFE), which has a λ′ = 1, is also shown.
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In the simplest of  strain paths, there are two end-member cases: in pure 
shear, the infinitesimal strain axes in each incremental step of  the deformation are 
parallel to each other and to the finite strain axes representing the entire deforma-
tion (Fig. 8.3a). In simple shear, the infinitesimal strain axes are not parallel to 
each other in each increment, nor are they parallel to the finite strain axes. A key 
aspect of  simple shear is that one of  the two LNFE is parallel to one of  the two 
LNIE and these are parallel to the zone of  simple shear (Fig. 8.3b). To understand 
how this works, imagine a deck of  cards: You inscribe a circle onto the deck and 
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1a LNIE

LNFE

3

LNIE

LNFE

3
1a

LNIE, LNFE

LN
F

E

L
N

IE
1a: will shorten 
in next increment

1b: shorter than initial but 
will lengthen in next step

2: initially shortened but 
now longer than initial

3: initially lengthened, 
will continue to lengthen

Extension (+)

Extension (–)

Time

(a) (b)

(c) (d)

Figure 8.3 — Illustration of  progressive strain. (a) A pure shear strain path where the prin-
cipal axes of  finite strain and incremental infinitesimal strain remain parallel throughout 
the deformation. (b) A simple shear strain path where infinitesimal and finite principal 
axes are non-coaxial. (c) The meaning of  fields 1-3 showing the history of  shortening and 
lengthening of  lines at time t in those fields. (d) Cartoon illustration of  what a layer of  
rock might look like in each of  the four fields.
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then you progressively shear the deck by sliding the cards over each other (Fig. 8.4). 
The cards themselves do not change length; they are parallel to the LNIE and 
LNFE, but the circle deforms into an ellipse and the principal axes of  the ellipse 
have different orientations in each step. Simple shear is particularly important in 
shear zones (Chapter 9) as well as in parallel folding (Chapter 10). The inherent 
asymmetry of  the simple shear case (Fig. 8.3b) is what we look for to determine the 
sense of  shear in fault zones. 

As the strain progresses, material lines will experience different histories of  
shortening and/or lengthening, depending on their initial orientations (Fig. 8.3c). 
Some experience only shortening, others only lengthening, and still others are first 
shortened and then lengthened. As you will see in the exercises, this can have a pro-
found effect on different lines, or layers, that start out with different orientations in 
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Figure 8.5 — More compe-
tent layers in a deformed 
and metamorphosed 
limestone have been 
stretched, a process 
known as boudinage. We 
can frequently put the 
boudined pieces back to-
gether to give us a linear 
extension.

(a) (b) (c)

Figure 8.4 — Illustration of  at the classic card deck experiment to demonstrate 
simple shear. The cards are viewed edge-on and thus appear as parallel lines. (a) 
initial stack of  cards with a circle inscribed on it. (b) and (c) progressive steps of  
shearing parallel to the cards, deforming the circle into an ellipse.
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the rock (Fig. 8.3d). Note that it is impossible to distinguish between pure 
and simple shear based on the finite strain alone! 

Strain from Geological Objects 
In geology, there are a variety of  different objects that can be used for the 

calculation of  strain. The problem, however, is two fold: first, they are generally in 
random orientations and second they provide different types of  information. A lay-
er that has been pulled apart in boudinage (Fig. 8.5) may provide evidence of  lin-
ear extension but nothing quantitative about shear strain. A deformed fossil, on the 
other hand, may furnish information about shear strain but none about the original 
dimensions of  the fossil and thus none about extensions. Mathematically, determin-
ing strain from such measurements is, like our GPS example (e.g., Eqn 7.33), an-
other case where inverse methods are needed. In the absence of  computing re-
sources and knowledge of  inverse methods, a large number of  clever graphical con-
structions and methods have cropped up. Presented here are just a few of  those 
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(a) Undeformed Trilobite (b) rock slab with deformed Trilobites

Figure 8.6 — A trilobite fossil is just one of  many types of  fossils with bilateral 
symmetry. (a) In a tracing of  the undeformed fossil, the medial line and line drawn 
at the base of  the head (cephalon) are perpendicular (two lines in red). (b) On a trac-
ing of  a deformed rock slab which contains several trilobites, initially in different 
orientations, in most cases those lines will no longer be perpendicular because the 
fossils are in an orientation where they have experienced angular shear. However, in 
three of  the trilobites (highlighted in blue), those two lines are still be perpendicular 
and therefore must be parallel to the principal axes of  strain (dashed lines).
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methods; for a much more comprehensive treatment, see the works by Ramsay 
(1967) and Ramsay and Huber (1983). 

Finding Principal Axes 

Sometimes, all we want to do is find the orientations of  the principal axes of  
finite strain. If  you examine Figure 8.2b, it is clear that there are just two sets of  
lines in a deformed body that have zero angular shear, ψ. Those sets of  lines are 
parallel to the principal axes of  finite strain. In other words, the principal axes 
of  strain are the only lines that have no shear strain or angular shear. 
Fortunately, there are many different types of  features in geology that are initially 
perpendicular, for example: fossils with bilateral symmetry (Fig. 8.6a), worm bur-
rows perpendicular to bedding, etc. Where such features are present in deformed 
rocks, they give us a rapid way of  finding the orientations of  the principal axes: just 
look for the features where perpendicular lines in the undeformed state are still 
perpendicular in the deformed state (Fig. 8.6b). Those lines must be parallel to the 
principal axes. 

Deformed Spherical Objects 

If  you are fortunate, your field area will contain deformed, originally approx-

imately spherical objects like the deformed quartz pebble conglomerate shown at 
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(a)

(b) (c)

S1 S2S2

Figure 8.7 — (a) A hypothetical rock sample bearing deformed spherical objects (light 
gray ellipses). By cutting the sample (b) perpendicular and (c) parallel to the long axis of  
the strain ellipse and measuring the aspect ratios, the full shape of  the strain ellipsoid 
can be determined and plotted on a Flinn diagram (Fig. 8.8).
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the beginning of  this chapter. Other examples include deformed oolites or pellets in 
carbonate rocks, reduction spots in slates, or even deformed vesicles in volcanic 
rocks. Each object is now distorted into it’s own strain ellipsoid. In the simplest type 
of  analysis, one would make two cuts of  the sample, perpendicular to the long axis 
(Fig. 8.7b) and perpendicular to the short axis (Fig. 8.7c) of  the ellipsoids. In many 
textbooks, the long, intermediate and short axes of  the strain ellipsoid are referred 
to as the X, Y, and Z axes, but we refer to them here as the X1, X2, and X3 axes 
with magnitudes (i.e., principal stretches) S1, S2, and S3. For each ellipse in each cut, 
we measure the long and short axis and calculate the ratio, S1/S2 or S2/S3 (i.e., X/Y 
or Y/Z). If  the strain is homogeneous, these ratios should ideally be the same for all 
of  the ellipses, but measurement error and the variability inherent in naturally de-
formed particles means that you will want multiple measurements to get the best 
determination of  the ratios. 

Once you have the best fit ratio of  S1/S2 and S2/S3, it is particularly conve-
nient to visualize the result in a graphical plot known as a Flinn diagram (Fig. 8.8). 
This diagram can be further quantified by calculating a parameter, k, given by: 

	 	 (8.17) k =
( S1

S2 ) − 1

( S2
S3 ) − 1
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ln (S1/S2)

ln (S2 /S3)
k = 0

k = 1
k = ∞

oblate

prolate

Figure 8.8 — The Flinn Diagram 
depicting different types of  strain. 
In the prolate field, the strain el-
lipsoids are cigar shaped whereas 
in the oblate field they are pancake 
shaped. The original cube is shown 
in blue and its deformation into 
the appropriate shape for the field 
of  the Flinn diagram is shown in 
light red.
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Rocks in the prolate field with k > 1 are dominated by a linear fabric and are 
commonly referred to as L-tectonites; those lying on the plane strain line (k = 1) 
are called LS-tectonites, and those in the oblate field display a pronounced planar 
fabric and a called S-tectonites. 

In rocks where the spheroids have different mechanical properties than the 
matrix in which they lie, or their boundaries are poorly defined, measuring the as-
pect ratio of  the ellipses in the two cuts may give a misleading answer. In that case, 
the method of  choice for most structural geologists is the Fry plot (Fry, 1979). This 
method works by plotting the centers of  the deformed spheroids rather than mea-
suring their aspect ratios. The centers should be most closely spaced in the S3 (or Z) 
direction of  the strain ellipse. You can make this plot manually by placing a piece 
of  tracing paper over a photograph of  a section of  the rock with the deformed 
spheroids in it. The center of  the paper is marked and placed over an ellipse near 
the center of  the image and all of  the centers of  the other ellipses are marked with 
points. Subsequently, the paper is shifted to a neighboring ellipse, taking care not to 
rotate the paper, and all of  the centers of  the other ellipses are again plotted on the 
paper. The process is repeated until all of  the ellipses have formed the center of  the 
plot. Although it is possible to construct a Fry plot by hand, there are many fine 
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(a) (b)

Figure 8.9 — (a) tracing of  deformed ooids from a photo in Ramsay and Huber (1983) and 
(b) a basic Fry plot of  the same data. Both graphics were produced with Frederick 
Vollmer’s (2015) excellent program, EllipseFit.
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computer programs available that will make the plot automatically once the ellipse 
centers have all been marked (Fig. 8.9). 

Three Deformed Lines Graphically 

Three lines in different orientations, for which you can determine both the 
initial and the final length, can be used in combination with the Mohr’s Circle for 
finite strain (Fig. 8.2) to determine the magnitude and orientation of  the strain el-
lipse in two dimensions (i.e., assuming plane strain). The graphical procedure is de-
picted in Figure 8.10. To calculate the strain proceed as follows: 

1. Find three lines in the sample for which you can determine the initial 
and final lengths. In Figure 8.10, they are the heavy black lines in the 
upper left corner, labeled a, b, c. 

2. Measure the final linear and initial sinuous (or discontinuous) lengths 
of  the three lines (red lines superimposed on the black) and calculate 
the stretch for each line (table in upper right corner of  the figure). 

3. Select the shortest final line to use as a reference line (we have used c 
in Figure 8.10), and use it as one side of  the deformed state triangle 
(lower left). Draw the other two sides of  the deformed triangle with 
the lines overlapping (e.g., lines a and b). 

4. Our restoration to the undeformed state will not use the full lengths 
of  a and b; instead we will restore the triangle shaded in yellow (A 
and B). Measure the lengths of  just those parts of  a and b that consti-
tute the side of  the deformed triangle. 

5. Construct the undeformed triangle by first restoring side C to its un-
deformed length, keeping it parallel to c in the deformed triangle. Us-
ing a compass, swing arcs from the two ends of  C with lengths appro-
priate to the restored lengths of  A and B. You calculate the restored 
lengths using the inverse of  the stretches in the table in the upper 
right of  Figure 8.10. 

MODERN STRUCTURAL PRACTICE 163 R. W. ALLMENDINGER © 2015-20



CHAPTER 8 FINITE STRAIN

6. Once you have the undeformed triangle, draw a line from each apex, 
perpendicular to the opposite side. For each side of  the triangle, mea-
sure the distance from the nearest apex to the perpendicular. Using 
the stretch for the appropriate line, calculate those lengths in the de-
formed state and measure the resulting distances from the appropriate 
apex on the deformed triangle. 

MODERN STRUCTURAL PRACTICE 164 R. W. ALLMENDINGER © 2015-20

26.5°

10.5°

–26 °

a

b

c

A

b

c
C

B

A

Line lf li S=lf/li
a 344 273.5 1.26
b 272 354 0.77
c 208 229.3 0.91

B

Start End
x1 x2 x1 x2

Line a 2.8 138.9 318.0 275.4
Line b 62.4 272.5 167.6 22.4
Line c 275.8 74.9 298.8 282.4

100 200 300

Deformed (final) 
geometry

Undeformed 
(initial) 

geometry

we actually analyze 
the yellow highlighted 

triangle

Figure 8.10 — Graphical procedure for determining the strain ellipse from three deformed 
lines in different orientations (heavy black lines). Final lengths are shown in blue and ini-
tial lengths in red. In this construction, we have chosen C as the reference line so it has the 
same orientation in all three diagrams. The perpendiculars from the apices to the oppo-
site side in the undeformed state are reconstructed in the deformed state triangle so that 
we can calculate the angular shears that each line has experienced.
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7. Construct lines from each vertex to the line segment that you calcu-
lated in step 6 on the deformed triangle (dashed red lines on the blue/
gray triangle). In the initial state triangle these lines were perpendicu-
lar to the side, but they are not in the final state triangle. The differ-
ence in angle is the angular shear that each line experienced during 
the deformation. 

8. You now have enough information to construct the Mohr’s Circle for 
finite strain in the deformed state. From your measurements, calculate 
the inverse quadratic elongations, λ′, and γ′ = γ/λ. Recall that the 
shear strain, γ, is the tangent of  the angular shears that you calculated 
in step 7. 

9. Plot the three points on your Mohr’s Circle construction and fit a cir-
cle, centered on the axis, to the three points. You can now read the 
principal inverse quadratic elongations from the Mohr’s Circle and 
you can calculate the orientation of  the maximum principal axis of  
finite strain relative to line c by measuring the 2θ′ angle on the circle. 
The final plot for Figure 8.10 is shown in Figure 8.11. 
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λ' = 1/λ

γ' = γ/λ
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2θ' = 93.5°

Figure 8.11 — Mohr’s Circle (left) for the deformation shown in Figure 8.10 and 
(right) the strain ellipse determined from the Mohr’s Circle plotted on top of  the 
original deformed lines from Figure 8.10. Blue lines are shorter than they started 
out and red lines are longer.
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Three Deformed Lines with Inverse Methods 

If  this graphical construction method strikes you as particularly tedious and 
prone to small errors (and you would be right, it is), it should provide excellent mo-
tivation to learn inverse methods, first mentioned in the preceding Chapter. In this 
final section we outline just how to do that to demonstrate that it is not too scary! 
Malvern (1969) and Allmendinger et al. (2012) give the solution for the inverse 
quadratic elongation as a function of  the Cauchy deformation tensor, , as: 

	 	 (8.18) 

where ds is the scalar length of  the deformed line, ℓf, and dxi are as shown in Figure 
8.12. This equation expands to: 

	 	 (8.19) 

The simple two-dimensional form of  the equation, equivalent to the graphical 
analysis, above, is: 

Cij
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Figure 8.12 — The meaning of  ds, dx1 and 
dx2 in Equations 8.18-8.22.

dx1

dx2

x1

x2

final length, ds = �f
initial length = �i
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	 	 (8.20) 

Because  is a symmetric matrix, , we can simplify Equation (8.20) as: 

	 	 (8.21) 

There are three unknowns, so we need the quadratic elongations of  three lines (a, 
b, and c) to solve for the two dimensional strain ellipse: 

	 	 (8.22) 

If  we call the 3×3 matrix, M, then this equation has the general form of: 

	  

which can be solved by inverting matrix M (Fig. 8.13): 

	  	 (8.23) 

With more than three lines, one can do a least squares best fit (Menke, 1984): 

	 	 (8.24) 
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In the three dimensional case, we would need the quadratic elongation of  six lines 
on at least two different planes to solve for all six independent components of  the 
Cauchy deformation tensor. 

The x1 and x2 in Equation (8.22) are the endpoints of  the lines in the de-
formed state. So, dx1 would be the x1 coordinate of  the end of  the line minus the x1 
coordinate of  the start of  the line as depicted in Figures 8.12 and 8.13. 
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Figure 8.13 — Spreadsheet solution to the same 3 lines problem solved graphically in Fig-
ures 8.10 and 8.11, using inverse methods (eqns. 8.22 and 8.23).
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Exercises—Chapter 8 
For some of  these problems, you will need to download the StrainSim program 
from: http://www.geo.cornell.edu/geology/faculty/RWA/programs/strainsim-v-3.html 

1. Using the StrainSim 3 program, 
(a) Draw a circle and triangle object and then choose animate from the model. 

Select simple shear and specify 100 steps of  2° each and click okay. You will 
see the objects progressively deformed. After the animation is finished, select 
the Info tab and copy the entire contents of  the table on the right into a 
spreadsheet or graphing program. Do this for each of  the three triangular 
bisectors, which you can select from the popup menu. In the spreadsheet or 
graphics program, plot the following: 
• The incremental extension for all three lines on a single plot 
• The finite extension for all three lines on a single plot 
• The angle for all three lines on a single plot 

(b) Now, start over and draw a circle with 4 lines at 90°, 75°, 45°, and 30° (but 
no triangle). Select Animation from the Model menu and specify pure shear 
with 100 steps of  0.014 horizontal extension. Again, plot the following: 
• The incremental extension for all three lines on a single plot 
• The finite extension for all three lines on a single plot 
• The angle for all three lines on a single plot 

Using your graphs as illustrations, discuss the similarities and differences be-
tween the progressive simple and pure shear deformation paths. 

2. Use the strainSim 3 program to perform a simple shear deformation with an 
angular shear of  35°. Plot the result on a Mohr Circle for finite strain in the de-
formed state. Use the measurements from the Mohr Circle to figure out what to 
enter so that you get the exact same size and shape strain ellipse using a pure 
shear deformation. 

3. The figure, below shows a tracing of  a slab of  deformed rock with a number of  
brachiopods and a crinoid stem that has been pulled apart, though the individ-
ual segments have not been deformed. Assuming plane strain and no volume 
change, plot the Mohr Circle for finite strain in the deformed state and deter-

MODERN STRUCTURAL PRACTICE 169 R. W. ALLMENDINGER © 2015-20



CHAPTER 8 FINITE STRAIN

mine the orientation of  the principal axes of  strain. What directions in the fos-
sils have the same length as they had before the deformation? 
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4. The photograph above is an annotated image of  a Pennsylvanian limestone 
from the Blackpine Mountains in southern Idaho, part of  the cover sequence 
of  the Raft River metamorphic core complex. The folded layers and those 
stretched in boudinage have been highlighted in black to be easier to see. The 
actual initial and final measurements of  A, B, and C are shown in expanded 
view on the next page. 
(a) Determine the magnitude and orientation of  the finite strain ellipse follow-

ing the steps outlined earlier in this chapter, either graphically or numerical-
ly. Be sure to show your Mohr’s Circle for finite strain with the three lines 
plotted in correct orientation.  Show the orientations of  the principal axes 
of  the strain ellipse on the diagram on the next page. 

(b) Can you tell whether the deformation was in plane strain? Explain. 
(c) Can you determine the orientation of  the infinitesimal strain axes? Explain. 
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Chapter 9 
Rheology, Stress in the Crust, and Shear Zones 

Introduction 
Why is it that some rocks break whereas other rocks appear to flow seamless-

ly? Sometimes, one can observe these contrasting types of  behavior in different 
minerals in the same rock? Rheology is the study of  flow of  rocks and to delve 
into this topic, and understand the question raised in the first sentence, requires us 
to understand the relations between stress and strain (or strain rate), the effects of  

environmental factors on deformation, and how materials actually deform at the 
scale of  the crystal lattice. 

Relationship Between Stress and Strain 
At its simplest, deformation can be either non-permanent or permanent. 

In the former case, the deformation exists only while the stress is applied and the 
material returns to its undeformed state upon removal of  the stress. Permanent de-
formation, on the other hand, is forever. These topics are treated more formally in 
Chapter 12. 
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Elasticity 

Elastic deformation is, by definition, non-permanent and instantaneous. The 
material suffers distortion only while stress is applied and quickly returns to normal 
when he stress is removed. Many processes in geophysics and geology are mostly or 
completely elastic: the propagation of  seismic waves, the earthquake cycle, or flex-
ure of  the lithosphere beneath a load such as a mountain belt or a sedimentary 
basin. The GPS data that you analyzed in Chapter 7 is largely non-permanent de-
formation that occurs when the earth on one side of  a fault “snaps back” during an 
earthquake, something known as the elastic rebound theory. What distinguishes all 
of  these deformations is that they are very small even though the stresses are larger. 

From your physics courses and experiments with springs, you probably re-
member Hooke’s Law, in which there is a linear relationship between force and 
displacement. However, you also know that both stress and infinitesimal strain are 
second order tensors and, therefore, the relationship between them should be a 
fourth order tensor: 

	 	 (9.1) 

where, Cijkl is the stiffness tensor. Although Equation (9.1) looks nasty with 81 
terms, they re not all independent. In fact because of  symmetry, there are at most 
36 independent parameters and for all practical purposes, we only refer to a few 
elastic moduli. They are:  

• Young’s modulus, E, for axial strain (elongations or shortenings), 
where σ = Eε. A material with a high Young’s modulus is very rigid.  

• The shear modulus or modulus of  rigidity, G, is appropriate 
for simple shear deformations. 

• The bulk modulus, or incompressibility, K, is likewise the 
one to use for simple contractions or dilations (i.e., volume strains). 

These moduli can be related to one another if  we know and independent parame-
ter, known as Poisson’s Ratio, ν, which describes to what extent a shortening in one 
direction is balanced out by a lengthening in an orthogonal direction. Poisson’s ra-
tio is the ratio of  the transverse to the longitudinal extension: 

σij = − Cijklεkl
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	 	 (9.2) 

For volume constant deformation, ν = 0.5 but for most rocks, 0.1 ≤ ν ≤ 0.33. All of  
these parameters are related by the following equation: 

	 	 (9.3) 

Rocks only experience a very small amount of  elastic strain before perma-
nent deformation ensues. That permanent deformation can be in the form of  a 
fracture or fault, something we saw in Chapter 6. When a fracture cuts across the 
material, there is a loss of  cohesion and the sample falls apart. However, the mater-
ial can also deform permanently without losing cohesion, a type of  deformation we 
call… 

Plasticity 

Plastic deformation results when a critical threshold stress, known as the 
yield stress (σy), is exceeded and the ratio of  the change in differential stress to the 
change strain decreases drastically. Three different behaviors are possible (Fig. 9.2): 
(a) the slope of  the stress strain curve decreases but remains positive, which is 

ν = −
et

eℓ
= −

( wf − wi

wi )
( lf − li

li )

G =
E

2 (1 + ν)
=

3K (1 − 2ν)
2 (1 + ν)
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Figure 9.1 — The blue rectangle is elastically 
deformed into the red rectangle (strains are 
highly exaggerated). Poissons ratio is defined 
as the ratio of  the transverse extensions to the 
longitudinal extensions, calculated from the 
w’s and ℓ’s, respectively as shown in equation 
(9.2).
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known as strain hardening, (b) strain increases continually without any further in-
crease in stress (perfect plastic behavior), or (c) the strain increases with decreasing 
differential stress, known as strain softening. Temperature largely controls which of 
these behaviors will occur. 

Strain Rate and Viscosity 

So far, we haven’t said anything about time except that elastic deformation is 
instantaneous. Consider the deformation shown in Figure 9.3a. The same material 
deforms continuously for a constantly applied differential stress, but the rate of  
deformation tensor , , increases with increasing stress. So, we can make a new 4

curve (Fig. 9.3b) where the differential stress is plotted against strain rate; the ratio 
between stress and strain rate is known as the viscosity, η, which is a measure of  a 
fluid’s resistance to flow. The material shown in Figure 9.3b exhibits a constant vis-
cosity and thus is known as a Newtonian fluid. Over a long period of  time, even 
rocks within the earth can exhibit fluid-like behavior, but in contrast to Newtonian 
fluids, they tend to exhibit non-linear, power law viscosity as we shall see, below. 

Viscous and elastic idealized models are combined in various ways. For ex-
ample, viscoelastic deformation is non-permanent but develops over time and is 

!ε

 The rate of  deformation tensor is commonly confused with the time derivative of  the strain tensor. For infinitesimal 4

strain, the two are equivalent but in finite strain, the former is defined with respect to the spatial coordinates whereas 
the latter is defined with respect to the material coordinates (Malvern, 1969).
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Figure 9.2 — Idealized differential 
stress(Δσ)-strain(ε) curves exhibiting dif-
ferent types of  plastic deformation once 
the yield stress, σy, is surpassed. Strain 
hardening occurs at lower temperatures 
where as strain softening at higher temper-
atures. If  the stress is removed (dashed 
line), the initial elastic deformation is re-
couped but the deformation beyond the 
yield stress is not.
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recovered over time as well. Likewise, there are viscoplastic models that combine 
elements of  viscosity and plasticity. There are many additional hybrid mechanisms. 

Environmental Factors 
The type of  deformation that a rock experiences is due primarily to its com-

position and the environmental conditions under which the deformation occurred. 
You have undoubtedly reviewed the environmental factors in the lecture part of  
your course. The most important are: 

• Confining Pressure — This is the uniform pressure surrounding 
the rock at the time of  deformation. It commonly corresponds to 
the vertical stress or lithostatic load, that is the weight of  the 
overlying rocks. An increase in confining pressure makes rocks 
stronger (i.e., the yield stress increases), as reflected by the slope of  
the Coulomb part of  the failure envelop. Because confining pres-
sure increases with depth, rocks should get stronger deeper in the 
earth. The formula for lithostatic load is: 

	 	 (9.4) Plith = ∫
z

0
ρgdz ≈ ρgz
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Figure 9.3 — (a) A material that accrues strain over time at constant stress. Δσa ≤ Δσb ≤ 
Δσc and thus the strain rate varies differential stress. (b) Same data plotted with dif-
ferential stress against strain rate. The slope of  the line is known as the viscosity and 
the simple material shown, with constant viscosity, is known as a Newtonian fluid.
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The right side of  this equation is a common approximation for the 
case where the density, ρ, does not vary with depth, z, and the 
change in gravitational acceleration, g, is small with changes in 
depth corresponding to crustal conditions. The confining pressure 
effect is relatively insensitive to rock composition, except of  course 
to the extent that composition determines density. 

• Temperature — With increasing temperature, mechanisms of  
crystal plasticity described below, which depend on composition, 
begin to kick in and reduce the yield stress. The increase in con-
ductive temperature with depth varies with tectonic setting, being 
about 15-20°C/km with depth (a heat flow of  about 60 mW/m2) 
in stable continental interiors, ~30°C/km in rift provinces (~90 
mW/m2), and >40°C/km in active volcanic provinces (~120 mW/
m2). Because temperature increases with depth, its effect is opposite 
to that of  confining pressure. Thus these are the two great compet-
ing factors, but they are modified by other factors as well, includ-
ing… 

• Fluids — There are three distinct ways in which fluids act to 
weaken rocks: (a) increasing the pore fluid pressure counteracts 
confining pressure by reducing the effective normal stress; (b) 
pressure solution dissolves soluble minerals, especially at high 
stress grain-to-grain contacts, redepositing the material locally in 
low stress “pressure shadows” or flushing the dissolved material 
completely out of  the rock; and (c) hydrolytic weakening where 
water in the crystal structure weakens the bonds of  the crystal. 

• Strain Rate — When the strain is high, rocks are more resistant 
to deformation and when they do deform, they are more likely to 
do brittlely. A slower strain rate allows the rocks to creep or flow 
under lower differential stress conditions, effectively lowering the 
yield stress. 
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Deformation Mechanisms 
Although the crust is complex, there are a relatively small number of  defor-

mation mechanisms which you have probably already reviewed in the lecture part 
of  your class. Here is a commented list: 

• Elastic deformation  —  Very low temperature, small strains 

• Fracture  —  Very low temperature, high differential stress, pore 
fluid pressure important 

• Frictional slip on preexisting fractures — Low temperature, high 
differential stress but less than that required for fracture, pore fluid 
pressure important 

• Pressure Solution  —  Low temperature, fluids necessary 

• Dislocation glide  —  Low temperature, high differential stress. 
Produces strain hardening behavior 

• Dislocation glide and climb  —  Higher temperature, high differen-
tial stress. Requires increased lattice diffusion to permit dislocations 
to climb around obstacles. 

• Grain boundary diffusion  —  Low temperature, low differential 
stress, slow strain rates 

• Crystal lattice diffusion  —  Very high temperature (T ≈ 0.85Tmelt), 
low differential stress. Probably only effective as a primary mecha-
nism in the mantle of  the earth. 

State of  Stress in the Earth 
The state of  stress in the earth is important for a number of  reasons ranging 

from where earthquakes nucleate to the thickness of  the elastic lithosphere that 
flexes under loads. There is a fundamental principle underlying the determination 
of  stress in the lithosphere: the dominant deformation mechanism is the one that 
requires the lowest differential stress to activate. If  mechanism A requires 500 MPa 
at a particular set of  environmental conditions, but mechanism B only require 200 
MPa, not only will B dominate, but the differential stress will never significantly ex-
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ceed 200 MPa. We tend to think of  stress magnitude as something that is imposed 
externally and independently of  the rocks but in fact, the strength of  the rock con-
trols the maximum differential stresses at any depth. 

Frictional Slip on Preexisting Fractures 

Although we examined Coulomb failure in an earlier chapter, even a casual 
look at almost any outcrop will demonstrate that rocks are full of  pre-existing frac-
tures and in fact the brittle crust is much more likely to slip on this pre-existing frac-
tures than by making new fractures. There is no such thing a pristine rock! Thus, 
the place to start is the failure envelope for preexisting fractures (following Sibson, 
1974, 1985): 

	 	 (9.5) 

where the asterisk indicates effective normal stress. We expand this equation by 
substituting in the equations for Mohr’s Circle for stress: 

	 	 (9.6) 

and after some algebra, we get an equation for the ratio of  principal stresses: 

	 	 (9.7) 

To find the minimum ratio of  effective principal stresses that is necessary for reacti-
vation, we set the derivative of  Γ with respect to θ equal to zero: 

	      ∴     	 (9.8) 

We now have the basis for calculating the minimum differential stress at 
which reactivation will occur but first, however, what about μ? Recall from Chapter 
6 that Byerlee’s Law shows that friction is relatively independent of  rock type (Fig. 
6.10). This result holds that at confining pressures of  less than 200 MPa (a little 
over 8 km depth for a density of  2500 kg/m3) μ = 0.85 and at greater confining 

τ = σ*n μ

(σ*1 − σ*3 ) sin 2θ = μ [(σ*1 + σ*3 ) − (σ*1 − σ*3 ) cos 2θ]

Γ =
σ*1
σ*3

= (1 + μ cot θ)
(1 − μ tan θ)

dΓ
dθ

= 0 Γmin = (μ + (1 + μ2))
2
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pressures, μ = 0.6. The only significant exceptions to this rule are the clays illite, 
montmorillonite, and vermiculite. Thus, to a first order, we can ignore composition 
in the upper crust, except for its obvious control on density. 

Assuming that one of  the principal stresses is vertical and equal to the litho-

static load minus the pore fluid pressure (here expressed as the pore fluid pressure 
ratio, λ): 

	  	 (9.9) 

we can derive expressions for the minimum differential stress that will activate slip 
on pre-existing weaknesses for the three basic conditions of  Andersons Law (Table 
9.1) 

Power Law Creep 

We have seen that dislocation glide and climb is the dominant mechanism of  
crystal plasticity in the crust of  the earth. Unlike frictional deformation, which is 
relatively independent of  composition and strongly dependent on confining pres-
sure, crystal plastic deformation depends strongly on composition and temperature 
but not on confining pressure. Through much experimental work, flow laws have 

σ*1 − σ*3 ≥ (Γmin − 1) ρgz (1 − λ) σ*v = ρgz (1 − λ)

Table 9.1:  Frictional Strength of  the Crust

Vertical Stress Tectonic Environment Minimum Differential Stress

σ3 thrust faulting

σ1 normal faulting

σ2 strike-slip faulting

σ*1 − σ*3 ≥ (Γmin − 1) ρgz (1 − λ)

σ*1 − σ*3 ≥ (Γmin − 1)
Γmin

ρgz (1 − λ)

     

where     

σ*1 − σ*3 ≥ (Γmin − 1)
Φ (Γmin + 1) + 1

ρgz (1 − λ)

Φ =
σ2 − σ3

σ1 − σ3
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been developed to describe this type of  deformation for many different rock types. 
The basic equation is: 

	 	 (9.10) 

Where 

 =  strain rate [s–1] 

Co  =  a constant [GPa–ns–11; experimentally determined] 

=  the differential stress [GPa] 

n  =  a power  [experimentally 
determined] 

Q  =  the activation energy  
[kJ/mol; experimentally 
determined] 

R =  the universal gas constant  
=  8.3144 × 10-3 kJ/mol 
K 

T =  temperature, K [K  =  °C 
+ 273.16] 

It is called power law creep 
because the strain rate is proportional 
to a power of  the differential stress. 
Equation (9.10) describes a non-linear 
viscous rheology. Because temperature 
occurs in the exponential function, this 
sort of  rheology is going to be ex-
tremely sensitive to temperature. To 
think of  it another way, over a very 
small range of  temperatures, rocks 

·e = Co (σ1 − σ3)n exp( −Q
RT )

·e

σ1 − σ3
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Table 9.2: Power Law Creep Parameters

Rock Type Log(Co)
GPa–ns–1

n Q
(kJ/mol)

Albite Rock 6.1 3.9 234
Anorthosite 6.1 3.2 238
Aplite 2.8 3.1 163
Clinopyroxenite 9 2.6 335
" 14.4 6.4 444
Diabase 6.5 3.4 260
" 11.72 3 356
Dolomite 14.4 9.1 349
Olivine (dry) 14.4-15.3 3.4-3.5 528-544
Olivine (wet) 14.2,16.1 3.4,4.5 444,498
Granite (dry) 1 -0.2 2.9 106
Granite (dry) 2 1.6 3.4 139
Granite (wet) 2 1.9 137
Limestone 9.9 2.1 210
Marble 25.8 7.6 418
" 20.6 4.2 427
Quartz Diorite 4.3 2.4 219
Quartzite (dry) 1.2 1.9 149
Quartzite (dry) 3 2.9 184
Quartzite (wet) 3 1.8 134
Quartzite (wet) 3.7 to 2.6 to 167
Salt (halite) 16.7 5.3 102
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change from being very strong to very weak. The exact temperature at which this 
occurs depends on the lithology. Also unlike the equations for frictional strength, 
there is no depth term in Equation (9.10). Instead, we must use temperature as a 
proxy for depth by assuming a geothermal gradient. Some  of  the experimentally 
determined parameters for different common rock types are shown in Table 9.2. 
There are many more that are available in the literature. 

Generally, one will want to calculate the differential stress as a function of  
temperature. That requires rewriting Equation (9.10) as: 

	 	 (9.11) 

Stress Variation in the Lithosphere 

To plot the variation of  stress in the crust one simply plots the appropriate 
equation in Table 9.1 and Equation (9.11) against depth (Fig. 9.4). The temperature 
in (9.11) will have to be converted to depth by assuming a geothermal gradient and 
here we have also assumed a continental strain rate of  10–15s–1. You can see from 
Figure 9.5 that the transition from frictional to crystal plastic occurs where the two 
lines cross and depends on tectonic regime, pore fluid pressure, geothermal gradi-
ent, strain rate and composition.  

Care should be taken not to interpret these curves too literally! In Figure 
9.4, for example, we assume that the crust has a quartz diorite composition when, 
in fact, crustal composition is highly variable. Likewise the mantle here is assumed 
to be dry olivine but in some tectonic environments, wet olivine would be more ap-
propriate. Furthermore, we have not even taken into account mechanisms like pres-
sure solution which are known to be quite important in the crust. 

What this analysis does demonstrate is that the middle crust can support the 
highest stresses, on the order of  several hundred megapascals, whereas the lower 
crust is very weak, supporting < 20 Mpa of  differential stress. In some areas where 
the crust is < ~40 km thick and/or heat flow is not very high, there will be a jump 

σ1 − σ3 =
·e

Coexp ( −Q
RT )

1
n
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in strength of  the uppermost mantle. In the case of  oceanic lithosphere or conti-
nental rift provinces with low heat flow, the upper mantle may be strong enough to 
support upper mantle earthquakes. This notion of  a strong middle crust and strong  
(-ish) upper mantle has given rise to the concept of  the lithosphere as a so-called 
“jelly sandwich”: two strong layers separated by a weak lower crust. 

Shear Zones 
As faults cut down through the earth, they change from simple fracture 

planes, to zones of  anastomosing fault planes to ductile shear zones that may be 
tens to thousands of  meters in thickness. One of  the great accomplishments of  the 
last thirty years in structural geology is the understanding of  genesis of  shear zones, 
especially the minor structures which are key to understanding the sense of  
shear. 
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Figure 9.4 — Spreadsheet illustrating the calculation of  differential stress magnitude 
in the crust of  the earth assuming that strength is controlled by frictional slip on pre-
existing fractures and power law creep. Note that we have assumed a single average 
coefficient of  friction rather than the two from Byerlee’s Law. The power law creep pa-
rameters are for quartz diorite from Table 9.2. Note that Equation (9.11) gives differen-
tial stress in GPa whereas the equations in Table 9.1 yield stresses in Pa. Conversion 
factors have been added to the spreadsheet to cover all values to MPa.
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Brittle Shear Zones 

Brittle shear zones that form in the upper ten kilometers or so of  the Earth’s 
crust develop a suite of  structures that reflect their evolution from pre- to post-rup-
ture. The pre-rupture structures remain preserved in the wall rocks long after the 
fault surface is fully developed. The most important of  these structures are the 
Riedel shears. These are conjugate Coulomb fractures that form in an en eche-
lon manner within an overall shear zone that is, ideally, oriented at ~45° to the 
principal stresses (Fig. 9.5). Because they are Coulomb fractures, the two planes 
have opposite senses of  shear: the R, or synthetic Riedel shears, form at an an-
gle of  φ/2 with respect to the shear zone and have the same sense of  shear as the 
main shear zone, itself  (clockwise in Fig. 9.5) whereas the R′ or antithetic Riedel 
shears form at 90–φ/2 and have a sense of  shear that is opposite to that of  the 
main shear zone (counterclockwise in Fig. 9.5). The angle φ is the angle of  internal 
friction (Chapter 6). P-shears may form at the time of  rupture and have the same 
sense of  shear as the main shear zone. 

A number of  publications emphasize the use of  Riedel shears and P-shears 
to determine the sense of  shear in fault zones (e.g., Petit, 1987). Some imply that 
any fracture at a low angle to the shear zone is an R-shear and any at a high-angle 
is an R′ shear. These are dangerous assumptions because rocks are full of  fractures 
that existed prior to, and have nothing to do with, the formation of  the fault. To 
improve your chances of  a correct interpretation, one should always determine that 
(a) there has been shear on the minor fractures (e.g., by observing slickensides, etc.) 
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φ/2

90°–φ/2

R

R′
45°

P

Figure 9.5 — Cross-
section showing 
Riedel shears in a 
right lateral shear 
zone. The gray 
dashed lines are P-
shears that form 
after Riedel shears 
at the time of  
through-going rup-
ture.



CHAPTER 9 SHEAR ZONES  & STRESS IN THE CRUST

and (b) the shear on the minor fractures is consistent with that associated with 
Riedel shears (Fig. 9.6). 

Where fluids flow and precipitate minerals — commonly quartz or calcite — 
in crevices and fractures associated with faulting, the resulting geometries can be 
very indicative of  the sense of  shear. Two types of  structures are very useful. The 
first are sigmoidal veins, which are sometimes referred to in older literature as 
“tension gashes” (Fig. 9.7). The asymmetry of  the veins and their shape reflects the 
rotation of  the older, central parts of  the veins that occurs during large magnitude 
finite strain. The tips of  the veins propagate parallel to the shortest principal axis of  
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Figure 9.7 — Sigmoidal veins in 
cross-section in a right lateral 
shear zone. Two generations 
are shown: an older inactive set 
in light gray and a younger 
smaller set at 45° to the shear 
zone boundary in white.

Figure 9.6 — Syn-
thetic Riedel shears 
(red arrows) show-
ing correct sense of  
offset associated 
with a larger fault 
zone (yellow 
arrows). Sense of  
shear (white arrows) 
is opposite that 
shown in Figure 9.5.



CHAPTER 9 SHEAR ZONES  & STRESS IN THE CRUST

infinitesimal strain which, we know from Chapter 7 is at 45° to the shear zone 
boundary. Eventually, the central part of  the vein may rotate so much that it is no 
longer favorably oriented for opening. When that happens, new veins at 45° may 
form, crosscutting the older generation of  veins (Fig. 9.7). Sigmoidal veins are high-
ly reliable indicators of  sense of  shear. 

The second case of  minerals precipitating from fluids in shear zones is the 
situation where an undulatory fault surface opens up a void during fault motion 
(Fig. 9.8). These voids are ideal places in which to precipitate minerals such as cal-
cite or quartz during fault movement. Under these conditions, the mineral fibers, 
sometimes called slickenfibers, are oriented parallel to the direction of  motion. 
On an exposed surface (Fig. 9.8b), one can identify the step from which the fibers 
grew, usually by the sharp contact between the step and the fibers which marks the 
“upstream” (with respect to the movement of  the upper plate) side of  the void. Like 
sigmoidal veins, slickenfibered steps are highly reliable indicators of  fault motion 
(Fig. 9.9). 
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movement opens a void 
along irregular fault plane

mineral fibers grow from 
the step into the void

slickensides on 
the fault surface sharp contact indicates 

beginning of step

(a)

(b)

Figure 9.8 — The formation 
of  mineral fiber steps on an 
undulatory fault plane. (a) 
The void produced by the 
fault slip is an ideal place in 
which to precipitate fibrous 
minerals such as calcite or 
quartz. (b) The fibers grow 
in the direction of  fault slip 
as the void grows in size. 
The key to correct interpre-
tation of  fault slip from the 
exposed geometry in (b) is 
to identify the sharp con-
tact between the top of  the 
step in the footwall and the 
fibers. A right-lateral or top 
to the right shear sense is 
indicated.
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Finally, although we tend to think of  foliations forming in metamorphic 
rocks, brittle fault zones can likewise have local foliation developed in the high 
strain zone that parallels the fault surface. Two morphologies of  fault-related folia-
tions are common (Fig. 9.10): (a) where there is a discrete zone of  gouge — clay-
like material produced by mechanical grind along the rock surface — the largest 
movements and thus highest shear strains occur between the gouge and the much 
less deformed wall rock. The foliation in the gouge reflects this heterogeneous sim-
ple shear strain and produces curving foliation planes (Fig. 9.10a). (b) Where the 
fault plane is in carbonate rocks, a localized pressure solution cleavage can form; in 
this case the highest shear strains are at next to the discrete fault surface and dies 
out upward into the country rock on either side (Fig. 9.10b). Both of  these cases are 
examples of  a type of  brittle S-C fabric, a term we will define in the next section. 

Ductile Shear Zones 

To appreciate how far structural geology has come consider that, in the mid-
dle of  the last century, it was common place for structural geologists to interpret 
that every planar foliation in a rock represented a separate deformation, labeling 
them S0 to Sn, where S0 was the original stratification. We now understand that 
progressive deformation in shear zones can develop two more more planar folia-
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Figure 9.9 — Calcite 
slickenfibers on a 
fault surface in lime-
stone. Large red ar-
rows indicate the 
sense of  shear in this 
oblique view with the 
upper (missing) block 
having moved down 
towards the lower left 
corner of  the photo. 
Small yellow arrows 
indicate the sharp 
contact between the 
fibers and the fault 
surface which indi-
cates the upstream 
side for the void.
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tions. The basic shear zone foliations (Fig. 9.11) are known as S-C fabrics; with 
the “C” standing for French word for shear, “cisaillement”, and the “S” the French 
word for “schistosité” or foliation in English. As you can tell, French geologists were 
amongst the first to correctly describe S-C fabrics (Berthé et al., 1979)! The geome-
try of  S and C planes develops by extremely heterogeneous simple shear. From 
your experiments with simple shear in the last chapter, you know that, the larger 
the shear strain, the closer and closer the long axis of  the finite strain ellipse rotates 
towards the plane of  shear, itself  (though technically never being exactly parallel, 
because there is no shear strain on planes parallel to a principal strain axis). The C, 
or shear, planes are region of  extremely high shear strain and thus the S or foliation 
planes become asymptotic to the C planes as they approach them (Fig. 9.11). 
Basement rocks in which one tends to find mylonites commonly lack easily identifi-
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(a) (b) Figure 9.10 — Cross-
sections of  fault re-
lated foliations in (a) 
fault gouge in silici-
clastic rocks, and (b) 
zones of  enhanced 
pressure solution 
next to faults in car-
bonates.

Figure 9.11 — Idealized diagram 
showing the arrangement of  S 
and C planes in an SC mylonite. 
Red ovals represent the strain 
schematically in different parts 
of  the structure.
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able offset features, so the reliable sense of  shear indicated by S-C fabrics is quite 
important. 

Before moving on to other sense of  shear indicators, a word of  caution: 
shear zone shapes commonly exhibit curving, sigmoidal geometries (re. Figs. 9.7, 
9.10 and 9.11). However, if  you compare Figures 9.7 and 9.11, the sense of  curva-
ture is opposite to each other even though both diagrams have the same sense of  
shear. To interpret these fabrics and shapes correctly, it is essential that you under-
stand the kinematics (i.e., the strain and how it was produced) rather than simply 
trying to do pattern recognition. The curved feature in Figure 9.7 is a vein and 
therefore the long principal axis of  the strain ellipse is perpendicular to it. The 
curving features in Figures 9.10 and 9.11 are foliations and therefore the long axis 
should be approximately parallel to them. 

There are a variety of  other shear sense indicators in mylonitic rocks based 
on the geometry of  individual grains and grain aggregates. These include σ- and δ-
shaped asymmetric porphyroclasts (Fig. 9.12) and fractured and rotated mineral 
grains (commonly feldspars as in Fig. 9.13). Although beyond the scope of  this 
manual, crystallographic c-axis fabrics and other microscopic preferred orienta-
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δ-type

σ-type

δ

σσ

σ

σ

Figure 9.12 — Asymmetric porphyroclasts in a mylonite from NW Argentina (left) and 
schematically on the right. Representative clasts are labeled on the photo. The top-
to-the-right sense of  shear is appropriate for both photo and sketch.



CHAPTER 9 SHEAR ZONES  & STRESS IN THE CRUST

tions are likewise commonly used to determine sense of  shear in plastically de-
formed mineral grains. 

Displacement in Heterogenous Shear Zones from Foliations 

So far, we have looked mostly at features that give us the sense, but not the 
magnitude, of  displacement in a shear zone. Displacement is commonly not easy to 
determine due to lack of  identifiable piercing points in basement rocks. If  we make 
the assumption that only heterogeneous simple shear is responsible for displace-
ment, there is quite a nice method published by Ramsay and Graham (1970). Con-
sider a homogeneous simple shear zone (Fig. 9.14). In the field, we can’t measure ψ 
directly, but we can measure θ′, which is just the angle between the foliation (as-
sumed to be kinematically similar to S-planes) and the shear zone boundary.  If  the 
foliation is parallel to the XY plane of  the strain ellipsoid then there is a simple re-
lationship between θ′ and γ:  

	 	 (9.12) tan 2θ ′ =
2
γ
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Figure 9.13 — Fractured and rotated plagioclase crystal from a mylonite in the 
Sierra Chango Real of  NW Argentina. Note the domino-style deformation of  the 
feldspar: the overall rotation gives the sense of  shear, even though the micro faults 
have the reverse sense of  displacement
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Although it is trivial in the case of  a homogeneous shear zone, we could compute 
the displacement graphically by plotting γ as a function of  the distance across the 
shear zone y and calculating the area under the curve (Fig. 9.14): 

	 	 (9.13) 

For a heterogeneous shear zone — the usual case in geology — the situation is 
more complex, but you can still come up with a graphical solution as above.  The 
basic approach is to (1) measure the angle between the foliation and the shear zone 
boundary, θ′, at a number of  places, (2) convert those measurements to the shear 
strain, γ, (3) plot γ as a function of  perpendicular distance across the shear zone, 
and (4) calculate the displacement from the area under the resulting curve (Fig. 
9.15). 

d = ∫
y

0
γdy = ∫

y

0

2
tan 2θ ′ 

dy
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foliation

y

shear strain, γ

area = d

y

θ1′

θ2′

θ3′
Figure 9.15 — Variation in foli-
ation across a heterogeneous 
simple shear zone (left) and the 
calculation of  displacement by 
determining the are under the 
curve of  shear strain versus 
distance across the shear zone.

d

y
ψ

θ′

area = d

shear strain, γ

y

Figure 9.14 — Hypothetical 
homogeneous simple shear 
zone demonstrating how the 
area under the shear strain-y 
curve is equal to the displace-
ment, d.
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General (2D) Shear 

Alas, most natural shear zones probably do not fit the simplified assumptions 
of  Ramsay and Graham (1970). Instead, they probably have a combination of  pure 
and simple shear (sometimes known as “sub-simple” shear), and may also have vol-
ume changes, both of  which would negate the elegant analysis of  Ramsay and 
Graham (1970). We will only briefly look at the theory here, following the work of  
Tikoff  and Fossen (1993) and Fossen and Tikoff  (1993). Because we have studied 
tensors and strain already, this part should be (relatively) easy to follow. We start 
with the deformation gradient tensor, which relates the positions in the initial state 
to those in the final state: 

	 	 (9.14) 

Neglecting the constant of  integration, this is the same equation as (7.13). In a co-
ordinate system parallel to the stretches and the simple shear is parallel to the X1 
axis, the tensor D that captures simultaneous pure and simple shear can be written 
in two dimensions as: 

	 	 (9.15) 

Γ is known as the effective shear strain. This equation is appropriate for a constant 
volume deformation where S1 = 1/S3. The deformation matrix for simultaneous 
simple shear, pure shear, and volume change is: 

	 	 (9.16) 

Dij, of  course, is an asymmetric tensor. If  you multiply D by its transpose, you get 
the symmetric Green deformation tensor, C (referenced to the initial state): 

	 	 (9.17) 

xi = Dij Xj

Dij = [S1 Γ
0 S3] =

S1
γ(S1 − S3)
2 ln (S1)

0 S3

Dij =
S1

γ(S1 − S3)
ln ( S1

S3 )
0 S3

DDT = DkiDkj = Cij
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From C you can determine the principal axes of  strain, etc. 

There are an infinite number of  potential paths that lead to any finite strain 
state. The deformation in Figure 9.16, for example, could be produced by (a) pure 
shear with stretch, S1 = 1.75, followed by a simple shear with γ = 4.0 (76°); (b) a 
simple shear with γ = 1.31 (52.6°), followed by a pure shear with S1 = 1.75; or (c) a 
general shear with S1 = 1.75 and γeffective = 2.29 (66.4°). One would need to extract 
information on the path — perhaps from curved mineral fibers — to distinguish 
these three possibilities. 
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Figure 9.16 — Any finite strain may arise from an infinite number of  possi-
ble strain paths. The one shown here was produced by a general shear with 
horizontal stretch of  1.75 and an effective shear strain for 2.29, but many 
other paths will produce exactly the same final state from the given initial 
state.
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Exercises—Chapter 9 

1. Calculate the variation of  differential stress with depth in the crust for Granite 
(dry) 2 (Table 9.2) assuming a strain rate of  10–15s-1, geothermal gradient of  
15°C/km, an average density of  2750 kg*m–3, in an extensional environment 
with hydrostatic pore fluid pressure, and a coefficient of  static friction of  0.70. 
You can to the calculations either in a spreadsheet or in Matlab. 

2. The diagram, below, shows the case of  simple shear of  a square where the an-
gular shear, ψ, is defined as the change in angle of  two originally perpendicular 
lines (i.e., the sides of  the box). A dashed line in the initial state makes an angle 
of  θ with respect to the plane of  shear. After the deformation, the same dashed 
line makes an angle of  θ′. Derive an equation which shows θ′ as a function of  θ 
and ψ. 

	  

3. Once Riedel shears form, they become material lines (really, cross-sections of  
planes) that rotate in the shear zone. For the questions that follow, assume μint = 
0.625, μs = 0.75, σ1 = 120 MPa, σ3 = 14.7 MPa, and the cohesion, So=20 MPa. 
Also assume simple shear, not general shear. 
(a) Calculate how much synthetic and antithetic Riedel shears will rotate before 

they become inactive. Show your calculations and include any plots that you 
used to come up with your answer.  

(b) What is the effect of  changing the magnitude of  the differential stress? 

ψ

θ θʹ
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(c) Use your result from the previous problem to calculate the angular shear 
necessary to make the synthetic Riedel shears inactive. 

(d) Given their different orientations within the shear zone, which shear, R or R′ 
do you anticipate would rotate faster and why? 

4. The following questions relate to the sketch, below, of  a ductile shear zone in in 
granitoid rocks. A grid has been laid over the sketch to help you make your 
measurements. 
(a) Use the Ramsay and Graham (1970) relationship, described above, between 

orientation of  foliation in a shear zone, θ′, and shear strain, γ, to determine 
the displacement across the shear zone. 

(b) What is the sense of  shear in the shear zone? 
(c) What assumptions does this calculation involve? 

 

5. The photographs on the next pages are rock samples showing fault related de-
formation. For each one, interpret the sense of  shear (relative to its orientation 
on the page) and make a quick sketch depicting the key features that helped you 
come to the conclusion that you did. 

Figure 3.4' Fabric traiectories of Figure 3'3' See Questions 3'3 and 3'4'

.:fJ::::"p"":yiffi1TJ::i"Tiff J;"#:lij,i"lx"":'iJ:""T,lili3l,l1$L*:"T::Hi::::ff;J":"#il11fi:TJJ;J::::lJ:1fi::rn"'l'l':?i'Jl'

20 4 6 m
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Chapter 10 
Fault-Related Folds and Cross Sections 

Introduction 
In this chapter, we change scale considerably from the previous few chapters, 

zooming out and looking at systems of  structures. In the process, you will gain ex-
perience carrying out one of  the most fundamental activities with which a structur-
al geologist is commonly tasked: drawing cross sections. Cross sections are the pri-
mary way that we project the geometries of  rock bodies into the subsurface and are 

motivated by a variety of  reasons both practical and intellectual. This task occurs at 
the intersection between data and interpretation. The difference between a good 
and a bad cross section can mean millions of  dollars wasted or embarrassing gaffes 
in publications and public presentations. Cross sections can be informal freehand 
affairs when one is trying to understand different alternatives, but the final version 
can be significantly improved by application of  “rules” and procedures based on 
our understanding of  fold geometrics and their relations to faults. Regardless of  the 
rigor with which one constructs a cross section, however, one should never forget 
that the cross section is only an under constrained model and not data. Uncertainty 
is where we will start. 
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Uncertainty in a Simple Depth Projection 
Uncertainty is a topic that we visited briefly in the early chapters of  this book 

but have not revisited since. You may recall that in Chapter 2, we saw the formula 
for the mean vector calculation (Eqn. 2.12). But now, let’s say we know the mean 
vector of  a series of  poles to bedding and want to use that data in a calculation of  
the depth to that layer some distance away where the layer is in the subsurface (Fig. 
10.1). This is the simplest sort of  subsurface projection of  geometry that one can 
imagine. Now, a question of  great import for anyone who has ever paid for a drill 
hole to a particular layer: what is the uncertainty, or error, in our knowledge of  the 
depth to the layer? 

The first part of  the problem, of  course, is to calculate the depth, d, as a 
function of  the horizontal distance, x, the dip, α, and the angle that the borehole is 
drilled at, γ. Because the borehole is not necessarily vertical, we have to solve the 
two right triangles with sides rx and rd, above. After some trigonometry, we get the 
expression for d: 

	 	 (10.1) 

Note that we are using π/2 which is 90° in radians, because most spreadsheets and 
programing languages require the use of  radians rather than degrees. You can see 
that, for the special case of  a vertical borehole, equation (10.1) would simplify to 
the much simpler: 

d =
x sin α

cos (γ − π
2 + α)
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d

r

90 – α

x

γ – 90 + α

α = dipγ

Figure 10.1 — The calculation of  
the depth to a layer at a horizon-
tal distance x from a surface 
outcrop with measured dip α. 
Quite on purpose, we do not as-
sume that the borehole will be 
perfectly vertical.
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	 	 (10.2) 

But we are going to use Equation (10.1) because that is more general and because it 
will allow us to incorporate uncertainties in the angle that the borehole is drilled. 

Let’s assume that x is perfectly known but there are uncertainties in the dip, 
α, of  the layer were are interested in (the gray layer above) and in the angle of  the 
borehole, γ. The standard error propagation equation for Gaussian errors (random 
and uncorrelated) for this case looks like (Taylor, 1997; Bevington and Robinson, 
2003): 

	 	 (10.3) 

Where δd is the uncertainty in depth in the borehole, δα the uncertainty in dip, and 
δγ the uncertainty in the angle of  the borehole. So, we have to differentiate equa-
tion (10.1) with respect to α and γ. You probably don’t remember how to do this off  
the top of  your head but there is an online tool that can help: WolframAlpha 
(http://www.wolframalpha.com). To differentiate with respect to α, enter this line 
into the search field: d(x*sin(a)/cos(g-(pi/2)+a))/da. And for γ, enter: d(x*sin(a)/

cos(g-(pi/2)+a))/dg. Notice we are using the letters “a” and “g” in place of α and γ. 
This gives us the following equations: 

	    and   	 (10.4) 

We can now simplify these and substitute into Equation (10.3) to get the propagat-
ed error in depth to the layer in the borehole: 

	 	 (10.5) 

Let’s put this to work in a simple test example. Our input is: 

d = x tan α

δd = ( ∂d
∂α

δα)
2

+( ∂d
∂γ

δγ)
2

∂d
∂α

= x sin (γ) csc2 (α + γ) ∂d
∂γ

= x sin (α) (−cot (α + γ)) csc (α + γ)

δd = (
x sin (γ)

sin2 (α + γ)
δα)

2

+ ( −x sin (α)
tan (α + γ) sin (α + γ)

δγ)
2
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Using equations (10.1) and (10.5) above, we calculate that uncertainty in the depth 
at which the top of  the layer is pierced in the borehole is 2101 ± 411 m! The 5° of  
uncertainty in the borehole and dip angles yields an uncertainty equivalent to 20% 
of  the depth of  the borehole. 

But these methods are even more powerful than that because we can now 
ask the question, which factor has a bigger effect on the uncertainty, the dip or the 
borehole angle. In other words, you now have the tools in hand to answer the ques-
tion: “Should I invest more time/money in reducing the error on the dip or con-
trolling the angle that the borehole is drilled?” You may be tempted to answer: “5° 
is five degrees” but in fact the trig functions are non-linear, so let’s try it. If  we set 
the borehole uncertainty to zero, we can then calculate that the 5° uncertainty in 
dip yields a depth uncertainty of  390 m, close to the total error. In contrast, per-
fectly known dip and 5° error in the drill hole orientation will give us 128 m of  un-
certainty in the depth. So now we know where to devote our time and resources: 
determining the dip better. As a field geologist, I like that outcome! 

This will not always be the case: for some geometries, the angle of  the bore-
hole could be more important. If  one has programed in these relationships in a 
spreadsheet or more complicated code (say, by propagating the errors in Equations 
6.4 to 6.6), it becomes trivially easy to play “what if ” games. With this lesson — 
that even the simplest type of  subsurface projection contains considerable error — 
firmly in mind, let us return to the initial objective, that of  drawing cross sections. 

Drawing Cross Sections 
Cross sections are the projection of  surface geology, supplemented by com-

monly sparse subsurface data, onto a vertical plane. Although similar to, they differ 

Parameter Magnitude Uncertainty

Horizontal distance , x 3000 m 0

Dip, α 35° 5°

Borehole angle, γ 90°  (i.e., vertical) 5°
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from the down-plunge projections that we studied earlier, in that the profile plane 
of  a fold is only vertical if  the fold axis is horizontal. The data that one has avail-
able varies, but commonly includes: 

• Stratigraphic contacts

• Intrusive contacts and metamorphic aureoles

• Structural information such as faults and fold axes

• Orientation data such as strikes and dips of bedding, cleavage, etc

• Borehole and/or seismic reflection data (Chapter 11)

Preparation for drawing a cross section 

Prior to starting any task, it is always worth examining your motives; other-
wise your time can be wasted. Types of  questions to ask yourself  before you start to 
draw your cross section include: 

• What is my purpose in drawing a geologic section?  

• Is this for a scientific study of  the tectonics of  a region or a de-
tailed process-oriented study of  a single feature 

• Is the section to be a balanced section? 

• Is it for some applied use such as oil and gas or minerals explo-
ration? 

• Do I need to show the distribution of  surficial features or interpret 
the upper 10 km of  the crust? And so on. 

• What types of  rocks and structures will the section depict (because 
there are rules for different types)? 

• Unmetamorphosed sedimentary rocks with excellent lateral conti-
nuity? 

• Metamorphic and igneous rocks with irregular contacts? 

• An area with lots of  pre-existing structure with abrupt lateral 
changes? 

• Where is the best place to draw the section?   
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• Usually, we draw sections so that they are oriented perpendicular 
to the structures and the strike of  bedding.  

• In general, we try to avoid drawing sections through very compli-
cated areas and also avoid drawing them parallel to structure, al-
though there are good reasons for doing both.  

• We usually want to locate sections where we have a lot of  orienta-
tion data and in areas where the outcrop allows us to place con-
tacts with some certainty 

Step-by-Step Section Construction 

1. Select the line of  section perpendicular to structure and where 
there are plentiful high quality data, avoiding local complications. 

2. Construct a topographic profile 1:1 (i.e., without vertical exaggera-
tion) along the line of  section (Fig. 10.2). Profile should be the same 
scale as the map. Ink in the topographic profile or, if  you are con-
structing the section in a graphics program, lock the profile or put it 
in a separate layer along with the elevation scale. 

3. Plot apparent dip tick marks on the topographic profile (remem-
ber that if  the strike is not perpendicular to the line of  section, then 
you have to calculate the apparent dip!). For dips that lie close to, but 
not on the line of  section, remember that you project them parallel to 
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Figure 10.2 — Plotting of  data in preparation for drawing the cross section. 
We construct the topographic profile along the line of  section and then 
project apparent dips, stratigraphic or structural contacts, and any subsur-
face information such as wells.
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the fold axis and not parallel to the strike. Do not project strikes and 
dips across faults onto the line of  section. You can plot the apparent 
dip tick marks permanently. Some people prefer to use a “bar and 
ball” symbol, that is a small circle a that location of  the projected ori-
entation with a tick mark indicating the apparent dip in the plane of  
the section (Fig. 10.2). 

4. Plot the geologic contacts on the topographic profile along the line of  
section. These should be marked lightly and in pen or pencil and la-
beled. 

5. Plot any subsurface constraints you may have such as seismic reflec-
tion data or borehole data as shown in Figure 10.2. 

6. If  the region is folded, you need to decide on a folding model as 
well as the relationship between folds and faults. This will depend on 
your knowledge of  the field area, field observations (e.g., slickensides 
on bedding planes, axial planar cleavage, etc.). In general, for un-
metamorphosed sedimentary rocks, a parallel fold model is most ap-
propriate whereas similar folds are more likely in cleaved rocks which 
have suffered some metamorphism. Trishear or parallel folds are most 
likely to be associated with tip lines of  faults, etc. If  you choose a par-
allel fold model, you must further decide whether the folds are kink 
(sharp hinges and planar limbs), concentric (limbs not planar, hinges 
broad), etc. Usually, the strikes and dips and field observations will 
guide you. 

7. Once you decide on a fold model and the relationship between fold-
ing and faulting, you can begin to use the rules of  the fold model (e.g., 
constant bedding thickness, dip isogons, kink axes, orientations of  ax-
ial surfaces, etc.) to project your structures to depth. 

8. For faults, be sure to show the sense of  slip in cross section. 

9. In general, do not draw your section deeper than the known strati-
graphic section. Do not be afraid to use question marks where you 
don’t know how a structure behaves. 
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A formal cross section is not a sketch! All features are plotted as precisely as possible 
following the rules that you have established for the region based on characteristics 
of  the region that you have actually observed. 

Fold-Fault Models 
Understanding the relations between coeval faults and folds is important for 

constructing the most plausible cross sections, especially in stratified rocks. We will 
start out with a simple two-dimensional assumption: that all of  the folds are (ap-
proximately) cylindrical. As we saw in our π-diagram of  the Big Elk anticline 
(Chapter 3, Exercise 3.2), with natural folds this is, at best, a crude approximation, 
but it does make our lives easier. 

Fold Kinematics 

In this chapter, we deal exclusively with cylindrical folds for the simple rea-

son that they represent plane (i.e., 2D) strain: a cross section perpendicular to the 
fold axis should capture, ideally, all of  the strain. Within this general category, there 
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are three basic kinematic fold models and how we draw the cross section depends 
on which model we choose. 

Parallel folds have Class 1 dip isogons and preserve bedding thickness 
throughout the fold. More importantly for section construction, the folds are flex-
ural slip, meaning that shear occurs on the bedding surfaces between the beds. We 
can calculate the amount of  angular shear, ψ, parallel to bedding as a function of  
the dip, δ, of  bedding (Fig. 10.3):  

	 kink folds:  ;     curved hinges:  	 (10.6) 

Because the shear is layer parallel, the bed surfaces themselves are lines of  no finite elongation. As 
we will see below, this is the critical assumption that enables us to do line length 
balancing. A surprisingly larger number of  natural folds have relatively narrow 
hinges and straight, rather than curved limbs; these are known as kink folds. In 
order to preserve bedding thickness, the axial planes of  kink folds must bisect the 
interlimb angle; otherwise one limb will be thicker than the other. Kink folds are 
common where faults change dip over a very small distance and in stratified rock 
sequences with multiple thin layers with weak bedding planes. A second important 
category is the concentric fold (Fig. 10.4) where all of  the bedding surfaces have 

ψ = tan−1 (2 tan ( δ
2 )) ψ = tan−1 (0.0175δ)
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Figure 10.4 — Illustration of  the Busk method of  cross section construction. Centers of  
curvature are determined from the intersection lines drawn perpendicular to adjacent 
dips. Two sets of  concentric arcs are highlighted in yellow and light blue. In concentric 
folding, synclines become very broad down section whereas anticlines terminate in cusps.
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the same center of  curvature but different radii of  curvature. Concentric folding is 
the basis for the Busk method of  cross section construction (Fig. 10.4). 

Similar folds have Class 2 dip isogons and kinematically can result from 
parallel shear planes oriented obliquely to bedding. Because of  the oblique shear, 
these folds preserve neither bedding thickness nor bed length. They do, however, 
maintain area. In areas with curved fault planes, similar folding provides and easy 
and straightforward way of  modeling how beds move over a bend or ramp in the 
fault plane. One should not mistake “easy” for “correct”, however! 

Trishear folds constitute a third kinematic model of  cylindrical folding. All 
shear planes emanate from a blind fault tip and spread out upward into a triangular 
zone of  simple shear. We discuss these folds in some detail, below. 

Fold Type and the Propagation/Slip Ratio 

The relationship between faulting and folding, and the type of  fold that re-
sults, depends strongly on the ratio between the rate of  propagation of  the fault tip 
line and the slip rate of  the fault, or propagation-to-slip ratio, P/S (Williams 
and Chapman, 1983; Hardy and Allmendinger, 2011)  For example, in the ideal-
ized fault-bend fold (Fig. 10.5a), the entire fault plane exists prior to any dis-
placement on the fault, a P/S = ∞ (infinity) because the propagation is a finite 
number while the slip is zero. In fault-propagation folds (Fig. 10.5b), the rate of  
propagation is only somewhat greater than, or can even be slightly less than, the 
rate of  slip. The loss of  slip which is necessary near the tip line is diffused out into 
the folded rocks in a way that depends on the specific model assumed. Detach-
ment or lift-off  folds experience slip with essentially no propagation of  the flat 
fault with which they are associated, which is known as a decollement (the French 
word for unsticking or ungluing). Think of  pushing a carpet across a room: when 
the edge of  the carpet runs into a wall the decollement between the carpet and the 
floor ceases to propagate and a bulge or ruck forms at the stationary tip. Tip-line 
folds, commonly referred to as “forced” folds, associated with normal faults have 
negative propagation to slip ratios because the tip-line propagates towards the sur-
face (as in thrust faults) whereas the slip of  the hanging wall is downward relative to 
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the footwall. Finally, listric normal faults produce roll-over anticlines produced by 
similar folding during shear oblique to the upper plate  

The kinematic models for many of  these fold types fall into two general cate-
gories: instantaneous limb rotation and progressive limb rotation. Faults 
with sharp bends produce kink folds where the limb changes from flat to its final 
dip without going through any intermediate stages. In contrast, the limbs of  folds 
associated with curved faults tend to rotate progressively to its final dip. The differ-
ences between these two models are particularly striking when one sees the geome-
try of  the growth strata, sediment that accumulate in the vicinity of  the fold dur-
ing its growth. We discuss each of  these type of  folds in the following sections. 

MODERN STRUCTURAL PRACTICE 209 R. W. ALLMENDINGER © 2015-20

(b) Fault-propagation Folds(a) Fault-bend Folds
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Figure 10.5 — Spectrum of  fault fold relationships, emphasizing the impor-
tance of  the propagation to slip ratio, P/S. See text for discussion.
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Fault-bend Folds 

Fault-bend folds, or ramp or hanging-wall anticlines, are so named because 
the upper plate moves over pre-existing bend in the fault surface (Fig. 10.5a, 10.6). 
They were first described by J. L. Rich (1934) in his mapping of  the Pine Mountain 
block in the southern Appalachians. Bends in faults occur because thrust faults in 
stratified rocks with differing mechanical properties tend to have a stair step trajec-
tory producing a ramp and flat geometry. Ramps occur where the fault cuts 
across bedding whereas flats are where the fault is parallel to bedding. For every 
step in a fault, once motion has occurred there are two ramps: where the fault cuts 
across bedding in the hanging wall and where it cuts across bedding in the footwall 
(Fig. 10.6). The key to restoring these folds is matching up the hanging wall 
ramp with the footwall ramp. 

Many structural geologists prefer the kink fault-bend fold (Fig. 10.6, top) be-

cause its geometry can be reproduced very precisely using the equations of  Suppe 
(1983). Suppe showed that: 

	 	 (10.7a) 

	 	 (10.7b) 

ϕ = tan−1 {
−sin (γ − θ) [sin (2γ − θ) − sin (θ )]

cos (γ − θ) [sin (2γ − θ) − sin (θ )] − sin (γ) }
β = θ − ϕ + (180 − 2γ) = θ − ϕ + δ
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hanging wall flat

Figure 10.6 — the ramp and 
flat geometry of  fault-bend 
folds, illustrated with kink 
geometry (top) and curved 
fault geometry (bottom).
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Where the angles are those shown in the inset diagram of  Figure 10.7. Note that, 
as used here, γ is the kink angle and not the shear strain! There are four unknown 
angles and two equations; Thus one need only determine any two of  the four angle 
and the other two can be calculated. In practice, Equation (10.7) is usually solved 
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using Newton’s method of  successive approximations but a graph of  solutions en-
ables anyone to construct kink fault-bend folds (Fig. 10.7). Equation (10.7a) simpli-
fies considerably when θ =φ, which represents a simple ramp up from a decolle-
ment. For that special case, the green line in Figure 10.7 shows a maximum at θ = 

30°. In other words, the steepest ramp up from a decollement that one can have 
and still preserve bedding thickness throughout the structure is 30°. One of  the im-
portant consequences of  the basic fault-bend fold theory is that, for parallel kink 
folding with no global shear in thrust plates (i.e., there is no layer parallel shear in 
horizontal beds), the hanging wall cutoff  is larger than the footwall cutoff  (β > θ) 
and the fault slip must decrease across the hanging wall ramp. 

It is entirely possible to construct fault-bend folds using other approaches. 
For example, Figure 10.6 (bottom) was constructed using layer oblique shear and 
similar folding. We shall see the equations and approach for doing that when we 
talk about listric normal faults, below. Increasingly, structural geologists are apply-
ing full mechanical modeling to the problem, though that is beyond the scope of  
this book. In unmetamorphosed parts of  thrust belts, however, the prevalence of  
slickenside bedding surfaces indicates that, to a first order, a flexural slip fold model 
is an adequate approximation. 
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Figure 10.8 — Two flavors of  
fault-propagation folding, 
both with a propagation to 
slip ratio of  2. Top, parallel 
kink fold model (Suppe and 
Medwedeff, 1990). Bottom, a 
trishear fault propagation 
fold. The dashed line is the 
triangular shear zone.
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Fault-propagation Folds 

Fault-propagation folds (Fig. 10.8) are produced by the propagation of  the tip 
line at a rate that is somewhat faster than the slip rate of  the fault. In drawing cross 
sections, the key question is: how is the loss of  slip on the fault accommodated by 
folding? Two popular kinematic models exist in the literature: The first employs 
parallel kink folding where the loss of  slip is compensated by enhanced growth of  
the crest of  the fold (Fig. 10.8 top) and the second, trishear, results in deformation 
being resolved in a triangular zone of  shear planes that radiate from the tip line of  
the fault (Fig. 10.8 bottom). The former model produces no deformation in the 
footwall of  the fault whereas the latter yields a deformed footwall and bedding 
thickness changes for that part of  the beds in the triangular zone. 

Kink Fault-propagation Folds 

The kink fault-propagation fold model of  Suppe and Medwedeff  (1990) can 
be quantified much the same way as kink fault-bend folds can. The pertinent, 
messy looking equation (ignoring shear in horizontal layers) is (Fig. 10.9): 

	 	 (10.8) 

where 	 ;   ;   and   . 

The parallel kink (constant thickness) fault-propagation fold theory yields 
several important results: 

• The maximum ramp up from a decollement is 60° (unlike fault-
bend folds where the maximum step up angle is 30°). 

• The fold changes geometry at the stratigraphic level of  the tip line: 
the fold in beds above that level has a flat crest but below that level 
the fold is a sharp kink. 

• For ramps off  of  a decollement, the geometry fixes P/S = 2. 

sin θ2 =
sin (γ*) sin (γ* − β1)

sin (γ1 − γ*) + [ sin (γ1) sin (γ* − β1)
sin (2γ* − β1) ]

γ = 90∘ + γ* − γ1 β2 = 180∘ − 2γ* + β1 δb = 2 (γ − γ*)
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• The fore- and back-limb dips are quite diagnostic in fault propaga-
tion folds (Fig. 10.10). This is very useful because the dips are easy 
to determine from field data. 

Trishear 

Trishear fault propagation folds (Erslev, 1991) have more independent para-
meters (Fig. 10.11) and are thus not so amenable to geometric analysis. Several fine 
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computer programs are available to calculate forward models of  these structures 
and because the models can be run backwards or forwards, there is even a grid 
search modeling strategy for application to real structures. The derivation of  the 
most basic form of  trishear following Zehnder and Allmendinger (2000) is instruc-
tive for its modern modeling approach. 

We assume that the footwall is fixed and the hanging wall moves at a con-
stant velocity, vo. The only particles that experience deformation are located inside 
the triangular shear zone (delimited by the dashed lines in Fig. 10.11) and we need 
to determine a velocity field of  a point inside the triangular zone. The velocity field 
will be written in vector form as  
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where the x and y axes are parallel and perpendicular to the fault line, and ,  are 
the usual unit vectors in the x and y directions.  The origin of  the coordinates is at-
tached to the fault tip (Fig. 10.11). 

In the hanging wall sector, .  In the footwall sector, . We now 
seek to construct a velocity field in the trishear zone that conserves area, is continu-
ous and matches the hanging wall and footwall sector velocities on the top and bot-
tom boundaries of  the zone.  The boundary conditions are 

	 ,      on      

,      on     	 (10.9) 

The condition that area is conserved, or that the flow is incompressible, is 
that the divergence of  the velocity field is zero, 

	 	 (10.10) 

The approach will be to choose a  field consistent with Eq (10.9), then de-
termine the  field from the above equations. Other than satisfying the boundary 
conditions and continuity, any reasonable field and any combination of  trishear 

v (x, y) = vx (x, y) ̂i + vy (x, y) ̂j

̂i ̂j

⃗v = vo
̂i ⃗v = 0

vx = v0 vy = 0 y = x tan ϕ1

vx = 0 vy = 0 y = − x tan ϕ1

div v = ∇v ≡
∂vx

∂x
+

∂vy

∂y

ν x

ν y
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Figure 10.11 — The 
key parameters of  
the trishear kinemat-
ic model, showing 
the velocities, angles, 
and coordinate sys-
tems.  All of  the rela-
tions below are given 
in the XY coordinate 
system, which moves 
with the tip line of  
the fault. After 
Zehnder and All-
mendinger (2000).
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angles can be chosen.  Note that equation (10.10) can be stated in three dimensions 
for analyzing 3-D deformation. 

The simplest of  an infinite number of  conditions we could assume, is that 
the velocity field is symmetric, so , and that vx varies linearly in y. To 
simplify writing the equations, let . One choice for  is 

	 ,     ,     ,	 (10.11) 

where sgn(y) denotes the sign of  y. For s = 1, the velocity distribution is linear in x, 
producing a strain rate that is nearly uniform with respect to y. It can easily be seen 
that the above field satisfies the  boundary conditions in Eqs. (10.9).  To find , 
we differentiate Eq. (10.11) with respect to x, invoke incompressibility (Eqn. 10.10), 

	 , 

and integrate with respect to y yielding 

	  

The constant of  integration, C, is found by using the boundary conditions given in 
Eqs. (10.9).  The resulting velocity field in the trishear zone is 

	 	 (10.12) 

Although Equation (10.12) represents just one of  an infinite number of  pos-
sible velocity fields that fits the boundary conditions, it does a surprisingly good job 
of  producing realistic appearing geometries and strain distributions. 

φ1 = φ2 = φ
m = tan φ vx

vx =
v0

2
sgn (y)

y

xm
+ 1 x > 0 −xm ≤ y ≤ xm

vx vy

∂vy

∂y
= −

∂vx

∂x

vy =
v0m

2 (1 + s)

y

m x

2

+ C

⃗v (x, y) =
v0

2 [( y
m x ) + 1] ̂i +

m
(1 + s)

y

m x

2

− 1 ̂j
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Extensional Drape Folds 

We commonly think of  folding in connection with horizontal shortening 
though folds can also form in regions of  horizontal extension. In the trishear mod-
el, where P/S < 0 normal faulting results. In these cases, the tip line propagates to-
wards the surface while the hanging wall moves downward with respect to the 
footwall. The fold that forms in front of  the advancing tip line has been called 
drape fold or a “forced” fold because, qualitatively, sediments are being draped over 
faulted rocks beneath (Fig. 10.5d). The exact same equation (10.12) can be used to 
model the extensional folds. It is important to realize that the deformation that ac-
crues in the hanging wall and footwall when a particle was located within the trian-
gular zone remains after tip line migrates past the particle. An interesting result of  
both numerical trishear forward models and analog experiments of  extensional 
forced folds is, when the underlying fault is steep enough, some of  the shear zones 
within the triangular zone will be oriented as high angle reverse faults (Fig. 10.12)! 

Roll-over Anticlines and Listric Normal Faults 

In listric normal faults, the hanging wall must deform to remain in con-
tact with the footwall. Although it is possible to model such deformation using par-
allel folding, the standard approach is to assume shear oblique to the layers, which 
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75°

Figure 10.12 — Green layer and 
black lines: tracing of  a photo-
graph of  a clay slab deformed 
over a faulted rigid substrate. 
Blue and red “×’s” lines of  no 
finite elongation as proxies for 
shear planes in trishear model 
of  structure. Light gray and red 
shaded areas: region of  reverse 
faulting in trishear model and 
analog clay experiment, respec-
tively. From Allmendinger 
(1998).
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is borne out by the common observation of  populations of  normal faults deform-
ing the hanging wall.  

The constant heave method, which uses simple vector addition, is general-
ly applied (Fig. 10.13).  We assume that, points overlying each constant dip segment 
of  the fault are displaced horizontally by the same amount, h. So that the actual slip 
vector, s, over that segment is parallel to the fault, the point must be sheared down-
wards by a vector that is parallel to the upper plate shear planes. Those planes are 
defined by their deviation from vertical, angle α in Figure 10.13. Thus, the slip vec-
tor and the amount of  shear parallel to the upper shear planes changes over each 
fault segment. The upper plate shear can be antithetic, vertical, or synthetic with 
respect to the shear on the fault plane. Equation (10.13) shows how the slip magni-
tude varies with respect to the dip of  the fault segment (δ), the heave (h), and the 
upper plate shear angle (α). 

	 	 (10.13) 

where n refers to the n-th fault segment. The equation works equally well for anti-
thetic, synthetic, or vertical shear and in either extensional or shortening environ-
ments. 

The same approach just describe can be used to reconstruct the trajectory of  
listric faults in the subsurface if  the shape of  the roll-over anticline is known (Fig. 
10.14a). In this method, the heave, h, is set by projecting the hanging wall shear di-

sn =
h

cos (δn) (1 + tan (δn) tan (α))
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δ Figure 10.13 — The constant heave 

method of  shear oblique to layers for de-
formation above a normal fault with two 
different dip segments. The fault is 
shown in red and the upper plate anti-
thetic shear plane in blue dashed line. 
The black triangles show the vector addi-
tion necessary to ensure that the slip 
vector is parallel to the fault segment.
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rection from the known intersection of  the fault plane and the top of  the roll-over 
(in pre-growth strata) to a level equal to the top of  the fault (Fig. 10.14a). One then 
uses the shape of  the roll-over, itself, to constrain the subsequent vector additions as 
shown in Figure 10.14b. The method depicted in Figure 10.14 can be used for syn-
thetic or antithetic shear planes. 

Balanced Cross-sections 
The fault-fold relations described in the last section allow us to construct rig-

orous cross-sections that “obey” geometric and kinematic rules. An admissible 
section is a geologic cross-section which represents the known structures of  the re-
gion. A viable section is one that can be restored to an undeformed state without 
gaps or overlaps that cannot be explained by geologic observation. The “without 
gaps or overlaps” bit is an acknowledgment of  strain compatibility. A cross-sec-
tion which is both admissible and viable is known as a balanced cross-section.  
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(b) Reconstruction of fault trace
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roll-over anticline

Figure 10.14 — Graphical reconstruction of  the fault trace knowing the shear an-
gle and the shape of  the roll-over anticline. (a) the initial, know geometry; (b) the 
reconstruction of  subsequent segments of  the fault. Green dashed lines show up-
per plate shear planes. In (b), the fault originally used to generate the roll-over is 
show as a light gray line.
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The Fundamental Bases for Balanced Cross-sections 

1. Conservation of  mass — At the most basic level, matter is nei-
ther created nor destroyed and little if  any is converted into energy.  
Thus, mass is conserved. In continuum mechanics, this condition 
is specified with the continuity equation: 

	 	 (10.14) 

This equation basically says that the change in density (ρ) with respect to 
time (t) of  a volume, plus the flux of  mass in and out of  the volume (giv-
en by the second term of  the equation, “v” = velocity), must be equal to 
zero. This equation can be expanded as: 

	 	 (10.15) 

where	 	 (10.16) 

“ ” is the divergence of  the velocity field. 

2. Conservation of  Volume (no change in density) — For 
subaerial thrust belts, compaction during deformation is not gen-
erally important so densities do not change during the deforma-
tion. Thus, volume is conserved. This means that: 

	  

Because density itself  is finite, this condition, known as incom-
pressibility, means that the divergence of  the velocity field in 
equation  must be equal to zero: 

	 	 (10.17)
 

dρ
dt

+ ρ
∂ (vi)

∂xi
= 0

dρ
dt

+ ρ∇v = 0

∇v = [ ∂v1

∂x1
+

∂v2

∂x2
+

∂v3

∂x3 ]
∇v

dρ
dt

= 0

∇v = [ ∂v1

∂x1
+

∂v2

∂x2
+

∂v3

∂x3 ] = 0
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3. Conservation of  Area (Plane Strain) — Because the wave-
length of  individual structures in a thrust belt is short compared to 
their strike parallel dimension, we can assume plane strain. This 
means that there is no velocity parallel to strike (the X3 axis): 

	  

Thus, cross-sectional area perpendicular to strike must be con-
served and we can write the two dimensional form of  the incom-
pressibility criterion: 

	 	 (10.18) 

This is the necessary condition for area balancing. 

4. Conservation of  Bedding thickness — Finally, if  bedding 
thickness is preserved, then we can assume parallel folding with 
shear parallel to bedding.  Thus, line lengths parallel to bedding is 
preserved.  Bedding marks the orientation of  one of  the two lines 
of  no finite elongation. 

In summary: 

To date, only area and line length balancing are really practical although 
there is a lot of  noise about true 3-D balancing.  The general sorts of  geologic fea-

∂v3

∂x3
= 0

∇v = [ ∂v1

∂x1
+

∂v2

∂x2 ] = 0

Table 10.1
Type of  Balance Dimension Assumptions Folding Model

Volume 3D
density of  rocks constant during deformation, 
no compaction, pressure solution, or growth 
strata

non-cylindrical or cylindri-
cal

Area 2D Plane strain with no strain perpendicular to the 
line of  section, area preserved

Cylindrical folding (parallel, 
similar, trishear, etc.)

Line Length 1D
Linear strain, no bedding thickness changes 
during deformation, shear parallel to layers so 
beds are lines of  no finite elongation

Parallel folding (kink, con-
centric, etc.)
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tures to watch out for which violate the assumptions of  line length and area balanc-
ing are: 

Volume changes: 

• compaction during deformation (particularly important in accre-
tionary prisms and foreland basin strata) 

• Sediment accumulation during faulting 

• Pressure solution (especially in carbonates but also in silicic rocks 
like shales and siltstones) 

• intrusions, diapirs, etc. 

Non-plane strain: 

• strike-slip faults 

• lateral ramps 

Line Length Balancing 

Most of  the cross sections in the literature, especially those drawn by hand 
and not with a computer program such as 2DMove, are one dimensional line 
length balanced sections. There are actually two cross sections that are constructed 
simultaneously: The present day, deformed section and the restored, or retrode-
formed, stratigraphic section. In the case of  a thrust belt, the retrodeformed sec-
tion will be much longer than the present day section and the difference in length 
will be the horizontal shortening that occurred due to thrusting. The basic pro-
cedure is to work from the external part of  the deformed belt to the internal part.  

The steps to constructing a line length balanced section are illustrated in 
Figure 10.15: 

1. To begin, one constructs the stratigraphic sequence in the unde-
formed footwall of  the most external thrust fault. This will become 
our ultimate frame of  reference, which is signified in line length 
sections as the regional pin line.  
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2. The deformed section of  the first thrust plate, back to the next 
thrust at the trailing margin of  the plate, is drawn using parallel 
folding constrained by the surface geology and any subsurface in-
formation available. 

3. Next, measure the lengths of  the deformed stratigraphic horizons 
and draw those as straight lines of  the same length, measured from 
the right hand thrust in the restored footwall. 

4. The left ends of  the restored stratigraphic horizons (Fig. 10.15b) 
define the restored geometry of  the trailing thrust fault (on the left 
side of  the section). This restored geometry appears unrealistic be-
cause it bends back on itself. Some explanations for this result are: 

(a) The left-hand thrust fault is younger than the right hand 
thrust, a so-called out-of-sequence relationship as the “normal” 
progression of  thrust in a thrust belt is from internal to exter-
nal. 
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length = 4.415 units

length = 5.113 units

length = 5.113 units

length = 4.4
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(a) Deformed section

(b) Restored 
section

regional 
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unrealistic restored fault trajectory

corrected section that 
would produce a more 
realistic fault trajectory

loose 
line

deformed 
loose line

Figure 10.15 — A simple line length balanced section, illustrating the restoration of  
the most external thrust plate, some problems with the initial restoration, and a 
modification (thin dashed lines) to the deformed section to correct the unrealistic 
restored fault (although more subtle problems remain).
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(b) The deformed section is in error, lacking bed length in either 
the footwall of  the right thrust or the footwall of  the left thrust. 
The suggested correction shown in Figure 10.15 adds addi-
tional bed length to the footwall of  the second thrust. 

(c) Although the correction shown improves the initial trajectory 
of  the left thrust, it does not correct another problem which is 
identified by the “loose line” — a line drawn perpendicular 
to horizontal strata in the deformed state, which is retrode-
formed with the stratigraphy in the restored state. The loose 
line shows that the fold style and hanging wall ramp geometry 
implies that there must have been very significant angular 
shear in horizontal beds. This might actually be the case, but 
can be tested by looking for slickensides on horizontal bedding 
surfaces in the field. 

5. Correcting the bed length in the hanging wall of  the right-hand 
thrust (effectively lowering the ramp angle of  the fault) would re-
duce, but not eliminate the issues raised by the loose line. To re-
move completely the effect would require a reevaluation of  the 
hanging wall ramp and the style of  folding depicted in the section. 

6. Note that we correct all of  these issues before drawing the struc-
ture in the upper plate of  the left thrust! Otherwise, all of  these er-
rors will propagate through the entire section. 

The simple example in Figure 10.15 that we just went through is a special 
case where the hanging wall cutoffs at the hanging wall ramp are preserved. A 
much more common case is depicted in Figure 10.16a: the hanging wall cutoffs are 
eroded away. In these cases, we don’t know exactly where the hanging wall was rel-
ative to the footwall, so we need a local reference frame that is specific to that indi-
vidual thrust plate. That is the role of  local pin lines. The location of  the local 
pin lines is a key issue (Fig. 10.16b, c). Ideally, it should be placed in horizontal stra-
ta. If  horizontal strata are not available, you can calculate the amount of  angular 
shear in the layers based on their dip from Equations 10.6 or Figure 10.3 and ad-
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just the local pin line accordingly so that, when restored to vertical, there is no 
shear in horizontal beds (Fig. 10.16d). 

The restored thrust plate is placed as close to the footwall as possible without 
overlapping it (Fig. 10.16b, c); this is the reason that many structural geologists will 
claim that their balanced section is a minimum estimate (more on that, below). The 
initial shape of  the thrust plate itself  is reconstructed by measuring the lengths of 
the stratigraphic horizons in both directions from the local pin line. 

Area Balancing 

Line length balancing is restricted to parallel folds and there are many cases 
where shear oblique to layering invalidates the preservation of  line length assump-
tion. In these cases, as long as the folds are cylindrical, horizontal shortening can 
still be estimated by carrying out an area balance. In its most general form, area 
balancing assumes nothing more than that the deformed and initial areas must be 
equal (Fig. 10.17). The deformed area can be calculated by drawing a polygon 
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Figure 10.16 — The use of  
local pin lines to recon-
struct a thrust plate with 
eroded hanging wall cut-
offs. (a) The deformed 
section. (b) restoration 
using a local pin line in 
horizontal rocks in sec-
tion (a). (c) Restoration 
using pin line B, which 
introduces a layer-paral-
lel shear in the unde-
formed state. In (d), we 
use a local pin line C that 
has been drawn to take 
into account the angular 
shear in dipping beds 
(Eqn. 10.6).
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around the region of  interest. The area, A, of  a polygon of  n vertices can be calcu-
lated as (Judge and Allmendinger, 2011): 

	 	 (10.18) 

where the first vertex (x0, y0) and the last vertex (xn, yn) are the same. Determination 
of  the initial undeformed area requires knowledge of  the initial unit thicknesses on 
either side of  the deformed zone. 

In cross sections where you can identify the local excess area (Ax in Fig. 
10.17b) above a regional datum of  the unit, you can extract quite a lot more infor-
mation. The concept has its origins with Chamberlin (1910, 1919) who used it, in-
correctly as it turns out, to differentiate thin- (Appalachians) and thick-shelled (Col-
orado Rockies) mountain belts. Today, we know these terms as thin- and thick-
skinned. As you can see in Figure 10.17b, 

	 	 (10.19) 

If  you know the excess area, Ax, and the displacement, d, it is trivial to calculate the 
depth to the decollement, h or vice versa. Using the approach of  Epard and 
Groshong (1993), you can use the excess area of  several beds to estimate both the 
displacement and the depth to the decollement. The method is illustrated in Figure 
10.18: 

A =
1
2

n−1

∑
i=0

(xiyi+1 − xi+1yi)

Ax = dh
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(a) Pre-deformation (b) Deformed section

future decollement decollement

At

Ax

Ax

At

d

h

Figure 10.17 — In a simple area balance, the total area (At) of  the undeformed and de-
formed packages (shown in blue) must be equal. Eon. 10.18 can be used to calculate those 
areas. The excess area (Ax) above a regional datum of  a surface can be used to calculate 
the displacement, d, or the depth to the decollement, h.
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1. Determine the excess area of  each resolvable bedding surface 
above its regional level. The excess area of  three of  the seven beds 
are highlighted in different colors in Figure 10.18a. 

2. Measure the height of  each surface above (or below) and arbitrary 
reference horizon or datum. the height is measured outside of  the 
region of  excess area. The reference horizon does not have to be 
the decollement level. 
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Figure 10.18 — The use of  excess area of  successive beds to determine displacement, 
depth to decollement, and average layer-parallel extension following Epard and 
Groshong’s (1993) method. (a) The original model to be analyzed was generated in Fault-
FoldForward as two propagating trishear structures with opposite vergence. The program 
calculates and colors the strain ellipses as shown. (b) A line-length restoration of  each 
bed. Comparison of  the restored length and actual original length yields the average bed 
length extensional strain. (c) Table of  height, excess area, and bed length strain measure-
ments that were used to generate the graphic in (d) where the horizontal displacement and 
depth to decollement are determined. The colored excess areas for three beds in (a) are 
show in cells of  the same color in the table in (c).
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3. Plot the excess area against the height for each bedding surface 
(Fig. 10.18d). For simple structures, these data points should lie on 
a straight line. The slope of  the line, Ax/h, is equal to the dis-
placement, d. 

4. The decollement is located where the excess area goes to zero. 
This can be found on the graph by projecting the best fit line until 
it incepts the height axis (Fig. 10.18d). 

5. The displacement, d, can be compared to the restored bed lengths 
(Fig. 10.18b) to determine the average extension of  each bed (Fig. 
10.18c). Because this example was generated from a complex for-
ward model, we already know the strain distribution. You can see 
that the actual strain is much more heterogeneous than implied by 
the average bedding parallel extension (Fig. 10.18a), but in the real 
world you are seldom lucky enough to have a whole bunch of  
strain ellipses at your disposal! 

For the purposes of  evaluating the horizontal shortening in a region, area 
balancing holds several advantages over line length balancing: it is independent of  
fold fault kinematic model and because it can be calculated analytically, one can 
formally propagate the errors associated with the calculation. It fails, however, 
when one is interested in predicting the structural geometry of  a single structure, 
for reasons of  resource extraction, seismic hazard evaluation, etc. In those cases, 
one should employ a variety of  kinematic and mechanical models to evaluate the 
range of  possibilities. 

A Final Word About Balancing 

Thrust belts, with their imbricated stack of  individual faults, are essentially 
sub-horizontal zones of  simple shear. Thus, the horizontal shortening calculated 
from balanced cross sections is not a principal axis of  shortening but instead is just 
a horizontal chord in a finite strain ellipse that is elongate and inclined towards the 
hinterland of  the belt. 
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Although the minimum estimate referred to above is commonly cited in the 
literature, there are many other sources of  error inherent in the construction and 
calculation of  shortening in balanced sections. Some of  those errors include: 

• Appropriateness of  structural model 

• Quality of  the geologic maps used 

• Eroded hanging wall cutoffs 

• Position of  the decollement 

• Location of  other subsurface points 

• Stratigraphic uncertainty (thickness & shape of  the wedge) 

It may come as a surprise that the uncertainty in the thickness and shape of  the 
stratigraphic wedge is the single biggest source of  error in section balancing (All-
mendinger and Judge, 2013). Even the best constrained balanced sections have to-
tal uncertainty equivalent to ~20% of  the calculated horizontal shortening value 
and this is for well-behaved thrust belts which deform a simple sedimentary pack-
age above basement. Although many people have attempted crustal scale balanced 
sections (including yours truly…), the uncertainties on those are unquantifiable to 
the extent that one might question whether whole crustal balancing is a worthwhile 
exercise! 
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Exercises—Chapter 10 
Cross sections are not sketches! They are precisely drafted documents. All angles 
should be measured and plotted with a protractor. There should be no vertical ex-
aggeration, i.e., V:H = 1:1. Sloppy or incompletely labeled cross sections will have 
points taken off. Many of  these exercises can be done in a vector graphics program 
as long as angles and line lengths can be measured accurately. 

1. You’ll be given a large sheet with a geologic map and space to draw a cross sec-
tion. You have seen this geology before: The NE corner of  the map is where 
calculated dips from three point problems and determined stratigraphic thick-
nesses of  several units. The NW corner contains the Big Elk anticline for which 
you programmed a down plunge projection. 
 
Construct a cross section along line AA′ on the map in the space provided be-
low the map. A topographic profile has been provided for you. The rocks are 
unmetamorphosed strata so you may assume a parallel fold model. Be sure to 
follow the basic guidelines in the “Drawing Cross Sections” part of  this chapter. 
Be sure to work in pencil as you will undoubtedly be erasing a lot. 

2. Derive Equation (10.6) for kink folds using an area balance. The geometries 
and key angles are given for you in the following figure. The area, A, to the left 
of  the kink axis in the undeformed (left) and deformed (right) sections must be 
the same. δ is the dip, ψ is the angular shear, γ the kink axial angle, and h is the 
bed thickness. 
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3. Given the fault bend fold templates on the following page, construct (a) a mode 
1, and (b) a mode 2 fault bend fold, using the relations in Figure 10.5. In each 
case, determine how much slip changes from the left side of  the structure to the 
right side. 

4. Construct a fault-propagation fold from the given the stratigraphic template on 
page 234 and the angles from Figure 10.7. 

5. The diagram on page 235 shows two identical rollover anticlines associated 
with a listric normal fault. From the shape of  the rollover, construct the listric 
fault trajectory. As indicated, use antithetic simple shear in the first case and 
vertical simple shear in the second case 

6. Derive Equation 10.13 in this chapter. Make sure to label and explain your cal-
culations adequately. 
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Exercise 3: Fault-bend fold exercise 
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Exercise 4: Fault-propagation fold exercise 
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Exercise 5: Roll-over anticline exercise 
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Chapter 11 
Structural Interpretation of  Seismic Reflection Data 

Introduction 
Geology presents us with a basic problem. Because rocks are opaque, it is 

very difficult to see through them and thus it is difficult to know what is the three-
dimensional geometry of  structures. This issue is particularly obvious when con-
structing cross sections as in the previous chapters. It is too expensive to drill closely 
spaced holes in order to constrain the geometry of  rocks in the subsurface and, 

commonly, there are some structures that have no surface expression and thus can-
not be projected to depth from surface outcrop.  

To the rescue comes a geophysical technique for remotely sensing the subsur-
face using sound waves. Seismic reflection profiling has been standard practice 
in the oil and gas industry for more than 50 years and is the most commonly used 
technique for mapping the subsurface. Some of  the most profound structural ob-
servations about our planet — thrust belts have decollements, low-angle normal 
faults exist — are best demonstrated with seismic reflection data. In this chapter, we 
will give you the bare-minimum background needed in order to begin using this 
uniquely useful type of  data as structural geologists. 

A

B

CD
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Echo Sounding 
Seismic reflection profiling is exactly analogous to echo sounding (Fig. 11.1). 

Lets examine the simple case of  making an echo first to see what the important pa-
rameters are. Why do you get a reflection or an echo?  You get an echo because the 
densities and sound velocities of  air and rock are very different. If  they had the 
same density and velocity, there would be no echo. More specifically, the P-wave 
velocity is: 

	 	 (11.1) 

where E = Youngs Modulus and ρ is the density. We tend to think of  velocity in-

creasing with density but you can see that in Equation (11.1) density is in the de-
nominator. There are a few rock types that have high velocity but low density; the 
most common one is salt. 

The acoustic impedance of  a material is its density times the velocity of  
sound in the material, ρV. The reflection coefficient is: 

	 reflection coefficient = 	 (11.2) 

This is what tells us how strong the reflection will be. If  you were in Yosemite Val-
ley making echo by shouting at the granite walls of  the valley, the reflection coeffi-
cient, R ≈ 0.999944. In other words, almost all of  the sound is reflected back at you 

velocit y = V =
E
ρ

R =
amplitude of reflected wave
amplitude of incident wave

=
ρ2V2 − ρ1V1

ρ2V2 + ρ1V1
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Figure 11.1 — Anatomy of  
an echo. It is the density 
and velocity contrast 
across the air-rock inter-
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from the interface, but a very small proportion actually continues into the rock (Fig. 
11.1). 

In seismic reflection profiling, what do you actually measure? If  you think 
about the Yosemite example again, we could measure the time that we made the 
sound and the time that we recorded the echo. The time difference is a function of  
the velocity of  sound in the air and twice the distance between us and the wall be-
cause the sound has to go from us to the wall and come back again. When you 
make an echo, the source of  the sound (your mouth) and the receiver of  the 
sound (your ears) are essentially in the same place. As we will see below, in seismic 
reflection profiling, the source of  the sound (an explosion, a vibrating truck, etc.) 
and receiver (the geophones) are offset from each other but we process them as if  
they were in the same place. 

The above example highlights three important things about seismic reflec-
tion profiling (Fig. 11.2): 

• Measure time, not depth, 

• The time recorded is round trip or two-way time, and 

• To get the depth, we must know the velocity of  the rocks. 
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Figure 11.2 —(a) We make a sound (red star) on the surface of  the Earth, the sound then 
goes down to different interfaces within the earth and some of  that sound is bounced 
back and recorded on the surface. (b) At the surface we can only measure the time that 
the sound was made and the time that it takes for the sound to go down to each interface 
and come back to the surface
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Velocities of  rocks in the crust range between about 2.5 km/s and 6.8 km/s. 
Most sedimentary rocks have velocities of  less than 6 km/s. These are velocities of  
P-waves or compressional waves, not shear waves and most seismic reflection sur-
veys measure P- not S-waves. 

Because we measure time and not depth, although seismic reflection profiles 
resemble geologic cross-sections, they are not. They are a spatially distorted picture 
of  the earth because rock velocities vary, both laterally and vertically. To illustrate 
impact of  laterally varying velocities, consider the case depicted in Figure 11.3. 
This case is commonly encountered in rift provinces where sedimentary basins al-
ternate with older, higher velocity rocks in mountain ranges. The horizontal inter-
face at 6 km depth looks like it has a step in it on the time section at the bottom be-
cause the sound waves travel more slowly to the 6 km interface on the right hand 
side than they do on the left hand side. This is just one of  many types of  artifacts 
for which the structural geologist/seismic interpreter needs to be aware! 
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Figure 11.3 — Top: geologic section showing a slow velocity sedimentary basin 
on the right hand side and continuous high velocity material on the left side. 
Bottom: a time section showing the distortion produced by the laterally varying 
velocity.
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Common Mid-Point (CMP) Method 
In the real earth, the reflectivity at most interfaces is very small, R ≈ 0.01, 

and the reflected energy is proportional to R2. Thus, at most interfaces ~99.99% of  
the energy is transmitted and 0.01% is reflected. This means that your recording 
system has to be able to detect very faint signals coming back from the subsurface. 
An additional complication is that, because the source usually involves a lot of  en-
ergy, it must be offset from the receivers. 

Data Redundancy and Signal to Noise Ratio 

The standard strategy for dealing with very weak signals is to increase the 
signal-to-noise ratio. If  you measure something many times, the signal in which 
we are interested should add together constructively (because it is the same every 
time) whereas the random noise should add together destructively (because it is dif-
ferent every time). 
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The geometry by which this is achieved is shown in Figure 11.4. Each of  the 
three panels corresponds to one “shot” (i.e., one episode of  making noise at a sta-
tion on the surface). The black dot, and each point on the reflector with a ray going 
through it, is a common midpoint (CMP), sometimes referred to as a common 
depth point (CDP). Notice that there are twice as many CMPs as there are sta-
tions on the ground (where the geophones are). That is, there is a CMP directly 
underneath each station and a CMP half  way between each station (hence the 
name “common midpoint”). As the source is advanced in the direction of  the pro-
file, each midpoint on the reflector of  interest gets sampled multiple times. 

In a complete survey, the number of  traces through each midpoint will be 
equal to one half  the total number of  active stations at any one time (not including 
the ends of  the lines where there are fewer traces and assuming that the source 
moves up only one station at a time).  The number of  channels in the recording 
system determines the number of  active stations. Most modern seismic reflection 
surveys use at least 96 (and sometimes as many as 1024 channels or more), so that 
the number of  traces through any one CMP will be at least 48. 

This number is the data redundancy, of  the fold of  the data. For exam-
ple, 24 fold or 2400% means that each depth point was sampled 24 times. Sam-
pling fold in a seismic line is the same thing as the “over-sampling” which you see 
advertised in compact disk players. In general, the higher the fold of  the data, the 
better the profile. 

Correction for Offset from the Source 

The first basic step in processing the data is to collect, or gather together all 
of  the traces that go through each midpoint (Fig. 11.5). Even after that book-keep-
ing step, although each CMP has been sampled multiple times (Fig. 11.4), we can’t 
add them together because each ray through the midpoint is a different length and 
thus the travel time will also be different (Fig. 11.5). Thus, the processor has to de-
termine a set of  velocities, known as stacking or normal move out (NMO) ve-
locities, which will correct for the fact that each ray through a CMP has a path of  a 
different length. These velocities should line up all of  the individual “blips” corre-
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sponding to a single reflector on adjacent traces. The relation between the horizon-
tal offset, x, and the time at which a reflector appears at that offset, tx, is: 

	 	 (11.3a) 

Or 

	 	 (11.3b) 

If  you have a very simple situation in which all of  your reflections are flat and there 
are only vertical velocity variations (i.e. velocities do not change laterally), then you 
can calculate the rock interval velocities from the stacking velocities using the Dix 
Equation (11.4): 

t2
x = t2

o +
x2

V 2
stacking

ΔtNMO = tx − to = t2
o +

x2

V 2
stacking

− to
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[in practice, there is no geophone at 
the source because it is too noisy] 

(a) CDP Gather

the NMO velocity is whatever velocity that 
lines up all the traces in a CDP gather.  It 
is not the same as the rock velocity
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(b) CDP Gather with 
NMO Correction
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e

Figure 11.5 — (a) Gathering together all of  the traces that go through the same midpoint. 
There is a trace for each recording station. The time that the reflection is recorded at each 
station increases with offset from the source. (b) Before the traces can be added together, 
they must be lined up by applying a stacking velocity to correct for the moveout time.
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	 	 (11.4) 

where Vi12 is the interval velocity of  the layer between reflections 1 and 2, Vst1 is the 
stacking velocity of  reflection 1, t1 is the two way time of  reflection 1, etc. The in-
terval velocity is important because, to convert from two-way time to depth, we 
must know the interval, not the stacking, velocity. Once the correction for normal 
move out is made, we can add all of  the traces together, or stack them. This is 
what produces the familiar seismic reflection profiles. 

Processing seismic data like this is simple enough, but there are huge 
amounts of  data involved. For example a typical academic deep seismic reflection 
profile is 20 s long, has a 4 ms digital sampling rate (the time interval between 
numbers recorded), and is 48 fold. In a hundred station long line, then, we have 

If  you are a field geologist by training or nature, which most structural geologists 
are, that seems like an intimidating amount of  data! Even with modern digital 
recording systems like smart phone compass apps, it is pretty tough to collect even a 
couple of  hundred measurements per day. But, don’t let the numbers fool you: the 
vast majority of  the numbers collected in a seismic reflection profile are worthless, 
they are noise rather than data. The geophones in a seismic reflection survey record 
everything — wind rustling the bushes, traffic, thunder, electrical noise — not just 
the reflections from subsurface interfaces in which we are interested. Much of  the 
data processing, and we have ignored here most of  the advanced processing, is 
meant to filter out or subdue the noise. Therein lies the difference between the field 
geologist and the geophysicist (Fig. 11.6)! Much of  the process of  learning field ge-
ology is learning how to filter information when you see it in the field and deciding 
small part of  that data is worth writing down. 

Vi(1,2) =
V 2

st2t2 − V 2
st1t1

t2 − t1

(200 CDPs)(48 sums)(20 s)

( 0.004 s
data sample )

= 48 × 106 data samples
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Migration 

The effect of  CMP processing is to make it look like the source and receiver 
coincide (e.g., having 48 vertical traces directly beneath the station). Thus, all 
common midpoints are plotted as if  they were vertically beneath the surface. This 
assumption is fine for flat layers, but produces an additional distortion for dipping 
layers, because of  course reflection from a dipping layer isn’t beneath us (Fig. 11.7). 
The effect of  this distortion is that all dipping reflections are displaced down-dip 
and have a shallower dip than the reflector that produced them. The magnitude of  
this distortion is a function of  the dip of  the reflector and the velocity of  the rocks. 

The process of  migration corrects this distortion, but it depends on well-
determined velocities and on the assumption that all reflections are in the plane of  
the section (see “sideswipe”, below). A migrated section can commonly be identi-
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Geophysicists record all the data and then filter it in the computer whereas field 
geologists filter out what they consider to be noise before ever writing anything 
down!
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fied because it has broad “migration smiles” at the bottom and edges (Fig. 11.8). 
Smiles within the main body of  the section probably mean that it has been “over-
migrated.” As we shall see, migration also removes diffractions. 

Resolution of  Seismic Reflection Data 
The ability of  a seismic reflection survey to resolve features in both horizon-

tal and vertical directions is a function of  wavelength: 
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a b

Figure 11.8 — Same portion of  a seismic section, shown both unmigrated (left) and mi-
grated (right). In the bottom section, note the arcuate, sweeping features at the bottom of  
the section which are classic migration “smiles”.

geophones at surface

tru
e positio

n of re
flector

Figure 11.7 — A dipping reflec-
tor in the subsurface will not 
appear in its proper position 
on a seismic reflection profile 
because all CMPs are assumed 
to be vertically beneath their 
corresponding station at the 
surface. Migration is a process 
that corrects this artifact.
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	 λ  = velocity / frequency. 

Wavelength increases with depth in the Earth because velocity increases and fre-

quency decreases. Thus, seismic reflection surveys lose resolution with increasing 
depth in the Earth. 
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layered sequence 
in the Earth

At higher frequencies (shorter 
wavelengths) the three beds will be 
distinguishable on the seismic section

At low frequencies (long 
wavelengths), these three 
beds will be "smeared out" 
into one long waveform

Figure 11.9 — The de-
pendence of  vertical res-
olution on frequency.

Figure 11.10 — Taughannock 
Falls near Ithaca, New York is 
65 m high. The snippet of  
seismic section on the right 
side is approximately scaled 
to the photograph for a fre-
quency of  60 Hz and velocity 
of  4500 m/s. 
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Vertical Resolution 

Generally, the smallest (thinnest) resolvable features are 1/4 to 1/8 the dom-
inant wavelength. At a higher frequency, finer scale layering can be resolved but at 
a low frequency, detail is lost (Fig. 11.9). A shallow, high resolution seismic reflection 
survey may have dominant wave lengths in the range of  60 Hz. Assuming our sed-
imentary rock sequence has a velocity of  4500 m/s, we can calculate that one 
wavelength is about 18.75 m. Thus, you can see that even a high resolution seismic 
survey is imaging layering which is much coarser in scale (tens of  meters) than the 
bedding or layering that the field geologist sees. This point is emphasized in Figure 
11.10. 

Horizontal Resolution 

The horizontal resolution of  seismic reflection data depends on the Fresnel 
Zone, a concept which should be familiar to those who have taken optics. The 
minimum resolvable horizontal dimensions are equal to the first Fresnel zone (Fig. 
11.11). Because frequency decreases with depth in the crust, seismic reflection pro-
files will have greater horizontal resolution at shallower levels. At 1.5 km depth with 
typical frequencies, the first Fresnel Zone is ~300 m. At 30 km depth, it is about 3 
km in width. 

Consider a discontinuous sandstone body (Fig. 11.12). The segments which 
are longer than the first Fresnel Zone will appear as reflections, whereas those 
which are shorter will act like point sources. Point sources and breaks in the sand-
stone will generate diffractions, which have parabolic curvature: Because fre-
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Figure 11.11 — Illus-
tration of  the first 
Fresnel Zone depen-
dence on wavelength, 
λ. Two wavefronts, a 
quarter wavelength 
apart, impinge on a 
horizontal surface.
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quency decreases with depth in the crust (and wavelength increases), seismic reflec-
tion profiles will have lower horizontal resolution at deeper levels. 

Diffractions 
Diffractions may look superficially like an anticline but they are not. They 

can be extremely useful, especially because seismic reflection techniques are 
biased toward gently dipping layers and do not image directly steeply 
dipping or vertical features. Diffractions help you to identify such features. For 
example, a vertical dike would not show up directly as a reflection but you could 
determine its presence by correctly identifying and interpreting the diffractions 
from it. High-angle faults are seldom imaged directly on seismic reflection profiles, 
but they, too, can be located by finding the diffractions from the truncated beds 
(Fig. 11.13). The shape and curvature of  a diffraction is dependent on the velocity. 
At faster velocities, diffractions become broader and more open. Thus at great 
depths in the crust, diffractions may be very hard to distinguish from gently dipping 
reflections. Note that a well-done migration should remove all of  the diffractions 
from the seismic reflection profile. For that reason, it is often advantageous to see 
both the unmigrated and migrated versions of  a profile. 
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Fresnel zone

reflection diffraction

(a) discontinuous sandstone bed

(a) seismic reflection profile

diffractions

Figure 11.12 — (a) cross section of  a discontinuous sandstone bed. (b) holes in the bed, or 
segments of  the bed that are smaller than the first Fresnel zone will generate diffractions 
rather than reflections.
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Artifacts 
The seismic reflection technique produces a number of  artifacts — mislead-

ing features that are easily misinterpreted as real geology — which can fool a 
novice interpreter. A few of  the more common “pitfalls” are briefly listed below. 

Velocity Pullup/pulldown 

We have already talked about this artifact when we discussed the distortion 
due to the fact that seismic profiles are plotted with the vertical dimension in time, 
not depth (Fig. 11.3). When you have laterally varying velocities, deep horizontal 
reflectors will be pulled up where they are overlain locally by a high velocity body 
and will be pushed down by a low velocity body (as in the example in Figure 11.3). 
If  unrecognized, this distortion could look like folding of  the deeper layer. 

Multiples 

Where there are very reflective interfaces, you can get multiple reflections, or 
multiples, from those interfaces. When the acoustic energy bounces off  of  a re-
flector at depth and comes back to the surface, an additional bounce can be gener-
ated by the air-rock interface (Fig. 11.14). The effective reflectivity of  multiples is 
the product of  the reflectivity of  each reflecting interface. For simple multiples (see 
below) then, 
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(a) Geologic section (a) Seismic reflection section

Figure 11.13 — (a) geologic section of  a high angle normal fault; (b) schematic seis-
mic reflection profile. The fault plane would not be imaged seismically because it is 
too steep but the truncations of  the offset bed would generate diffractions, allowing 
one to interpret at fault (dashed line).
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	 Rmultiple  =  R2primary. 

If  the primary reflector has a reflection coefficient of  0.01 then the first multiple 
will have an effective reflection coefficient of  0.0001. In other words, multiples are 
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Figure 11.14 — (a) Geologic section and (b) a simple multiple on a seismic section 
generated by the ray path bouncing off  of  the underside of  the surface of  the Earth.
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Figure 11.15 — More complicated multiples can result from dipping horizons (top) 
and from reverberation between two layers (bottom).
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generally only a problem for highly reflective interfaces, such as the water bottom 
in the case of  a marine survey or particularly prominent reflectors in sedimentary 
basins (e.g. the sediment-basement interface). 

In addition to the simple multiple shown in Figure 11.14, more complicated 
reverberations can exist. For example, multiples from dipping layer have twice the 
dip of  the primary reflector and you can have peg-leg multiples that result from the 
ray path bouncing around between two layers in the subsurface (Fig. 11.15) 

Sideswipe 

In seismic reflection profiling, we assume that all the energy that returns to 
the geophones comes from within the vertical plane directly beneath the line of  the 
profile. Geology is inherently three-dimensional so this need not be true. Even 
though geophones record only vertical motions, a strong reflecting interface which 
is out-of-the-plane can produce a reflection on a profile, as in the case illustrated in 
Figure 11.16. Reflections from out of  the plane is called sideswipe. Such reflec-
tions will cross other reflections and will not migrate out of  the way. (Furthermore 
they will migrate incorrectly because in migration, we assume that there has been 
no sideswipe!)  The main way of  detecting sideswipe is by running a sufficient 
number of  cross-lines and tying reflections from line to line. Sideswipe is particular-
ly severe where seismic lines run parallel to the structural grain. 
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Figure 11.16 — Illustration of  a 
geometry where you could get 
out of  plane reflections known 
as sideswipe.
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Buried Focus 

Tight synclines at depth can act like concave mirrors to produce an inverted image 
quite unlike the actual structure. Although the geological structure is a syncline, on 
the seismic profile it looks like an anticline. At the dawn of  the seismic reflection 
age, many an unhappy petroleum geologist has drilled a buried focus hoping to find 
an anticlinal trap!  The likelihood of  observing a buried focus increases with depth 
because more and more open structures will produce the focus. A good migration 
will correct for buried focus. 

Structural Interpretation of  Seismic Profiles 
Modern seismic interpretation software packages are extremely powerful and 

provide excellent tools for interpretation of  both two- and three-dimensional data. 
In fact, it is virtually impossible to interpret 3D data cubes without the benefit of  
such packages. Here, we have much more modest aims: how to extract useful struc-
tural data from traditional 2D data. Because every seismic profile is different, there 
is no cookbook approach to interpretation. Perhaps one of  the most important 
things to remember is that seismic reflection data is biased towards hori-
zontal reflectors and steeply dipping interfaces cannot be imaged di-
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Figure 11.17 — Tight synclines such as that depicted in (a) produce multiple 
CMPs on a single layer per station, an effect known as a buried focus. (b) 
When we use standard CMP processing, we plot all of  those points from dif-
ferent parts of  the structure directly beneath the station resulting in a bowtie 
pattern and what appears to be an anticline where there is really a syncline.
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rectly at all. In addition, there are some basic things that all interpreters look for: 
truncations, discontinuities, and kink axes. 

Truncations and Discontinuities 

Truncations imply an abrupt geological boundary, though there are many 
potential explanations. Among the most common are: truncation at a fault, intru-
sive or diapiric contact, an angular unconformity, or various types of  downlap or 
onlap. Which of  these you choose will depend on your knowledge of  the area. 
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Figure 11.18 — Migrated seismic reflection profile showing the truncations (red arrows) of  
well-defined reflections corresponding to a Cenozoic sedimentary basin sequence against 
a much less reflective zone. “a” and “b” show the base of  the basin sequence in the hang-
ing wall and footwall. Truncations are interpreted as a thrust fault, even though there are 
no fault plane reflections.
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Truncations with layered reflections that represent strata on both sides are most 
likely either fault truncations, unconformities, or onlap or downlap. Truncations at 
a high angle with layered reflections on one side and a featureless area on the other 
could be fault, intrusive, or diapiric contacts. 

Figure 11.18 shows numerous truncations, indicated by the red arrows. This 
section comes from an area of  known thrust-faulting, so it is highly likely that the 
main set of  truncations define a curved thrust fault inclined towards the right. The 
upper plate of  this thrust has a zone of  poorly resolved reflections that probably 
correspond to basement rocks or more highly folded and deformed Paleozoic stra-
ta. On top of  this relatively transparent zone, above horizon “a”, lies a perched 
Cenozoic sedimentary basin. The interpreted thrust fault parallels the base of  the 
Cenozoic basin suggesting that the fault is in a position of  a hanging wall flat over a 
footwall ramp. There are also more subtle truncations below horizon “b” at the 
base of  the well-defined Cenozoic basin in the footwall. These could represent an 
angular unconformity but with the evidence available, one could not rule out the 
possibility of  a sub-basin fault that parallels the Cenozoic basin fill. 

Figure 11.19 shows an example of  a discontinuity with dipping reflectors 
above a relatively flat reflection horizon indicated by the red arrows. This geometry 
is commonly indicative of  a decollement or detachment in the crust above which 
the rocks have been either shortened or extended relative to the rocks below (you 
will get to decide which in the exercises!). 
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Figure 11.19 — Migrated seismic reflection profile showing a discontinuity with 
dipping reflectors above the relatively flat lying reflector indicated by the red ar-
rows.
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Kink Axes 

Even folds with curved hinges 
commonly have long, relatively 
straight limbs so it is possible to define 
kink axial surfaces on seismic reflec-
tion data. Recall that, in fault-related 
folds, kink axes are systematically re-
lated to the hanging wall and footwall 
ramps and thus, drawing kink axes on 
the seismic data can aid in the con-
struction of  the underlying fault 
geometry. In parallel folds, kink axes 
should bisect the angle between the 
two limbs, but on time sections, this 
will only be true if  the section is dis-
played at a 1:1 scale for the rocks in-
volved. Figure 11.20 depicts a small 
kink band imaged on a migrated 
seismic reflection profile. Despite 
the curved nature of  the hinge re-
gions, the axial surfaces A and B 
are relatively straightforward to posi-
tion. They are parallel to each other and are reasonably close to being interlimb 
angle bisectors, suggesting that this part of  the seismic section has little vertical ex-
aggeration. 

Kink Axes and Growth Strata 

The axis C in figure 11.20 is poorly defined but is necessary because axis B 
disappears up-section before A does. The reason for this becomes clear upon care-
ful inspection of  stratigraphic section labeled D: this section is thicker to the left of  
B/C than it is to the right of  A. Thus, we can interpret that the kink band began to 
grow at a time equivalent to the age of  the strata at the change from B to C. The 
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Figure 11.20 —Kink band on a migrated 
seismic reflection profile. Sequence D 
changes thickness across the kink band pro-
ducing the growth axial surface, C.
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end of  growth would correspond to the age of  the strata where C meets A; the ex-
act position of  this juncture is not well imaged on this section because of  the lack 
of  resolution higher in the profile. Axis C, which is known as a growth axial sur-
face, does not bisect the angle between the limbs because the thickness changes 
across this boundary. Sequence D is known as growth strata because they accu-
mulate on and around a structure during its growth. In general, axes that produce 
folding of  the entire section, such as A, are know as active axial surfaces and 
are commonly fixed to the footwall ramp of  the underlying structure. B is known as 
a fixed axial surface and moves with the hanging wall ramp of  the fault (Suppe 
et al., 1992). There is quite a bit more to interpreting growth strata geometries than 
what we have touched on here but, to review that, would make an already long 
chapter even longer! 

A convenient plot for identifying growth strata is the vertical separation 
diagram. Vertical separation is simply the vertical difference between the depth to 
a horizon in one vertical section (or drill hole) on top of  the growing (or subsiding) 
structure and that in another vertical section lying outside of  the structure. In pre-
growth strata, the vertical separation is constant whereas in the growth strata, the 
vertical separation diminishes up-section towards zero at the depositional surface 
(Fig. 11.21). One great advantage of  the vertical separation diagram is that it does 
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Figure 11.21 — Construction of  a vertical separation diagram over a growth fault-bend 
fold. This diagram has no dependence on fault-fold kinematic models
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not depend at all on the fault-fold kinematic model; one simply needs two vertical 
sections. It works equally as well for growth normal faulting on passive margins as it 
does for thrust faulting. The vertical separation diagram is also quite useful when 
studying fault reactivation (Mitra, 1993). 
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Exercises — Chapter 11 

1. The diagram below shows a very simple geological cross section where base-
ment rock with a velocity of  6 km/s has been thrust over a sedimentary basin 
with a velocity of  3 km/s. Accurately construct what an unmigrated time sec-
tion would look like, assuming both the base of  the basin and the thrust fault 
plane are reflective. 
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2. Interpret the migrated time section on the following page by plotting and inter-
preting kink axes. Finalize your interpretation by constructing a depth section 
in the box below the seismic section. Use the stacking velocities and times at 
points A, B, and C, given in the tables, below, to calculate the depths. Recall 
that the time is the two-way travel time. 
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Velocity at Point B

Time (s) Stacking Velocity 
(km/s)

0.6 4.27

0.88 4.8

1.54 5.52

1.9 5.6

2.7 5.8

3.0 5.9

4.0 6.3

Velocity at Point A

Time (s) Stacking Velocity 
(km/s)

0.6 3.64

1 4.4

1.25 4.8

1.5 5.0

1.8 5.3

2.6 5.8

3.0 5.8

Velocity at Point C

Time (s) Stacking Velocity 
(km/s)

0.6 2.94

0.8 3.27

1.1 3.8

1.3 4.1

2.2 5.0

2.8 5.4

3.0 5.6
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3. Interpret the section, below, using kink axial surfaces and, if  you identify any 
growth strata, indicate at what level growth initiated. Is the structure still active? 
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4. The table, below, shows the tops of  dated formations in two well, A and B. 
Construct a vertical separation diagram and identify (a) which well is on the 
growing structure; (b) the time(s) of  growth; (c) the rate of  vertical displacement 
of  the structure (assuming uniform compaction), and (d) the growth history of  
the region. 
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Formation Age

Plio-Quaternary

Pliocene

8 Ma

upper Miocene

10 Ma

Miocene

middle Miocene

14.3 Ma

lower Miocene

lower Miocene

lower Miocene

27.5 Ma

Eocene

Paleocene

Upper
Cretaceous

Upper
Cretaceous

Depth in Well A
(m)

250

500

800

1355

1950

2280

2730

3198

3540

3875

4162

4480

4700

5090

5510

5855

Depth in Well B
(m)

250

500

738

1180

1650

1975

2435

2900

3160

3295

3405

3543

3678

4065

4485

4830

The table, below, shows the tops of dated formations in two wells, A & B. Make a vertical separation vs.
depth diagram and determine the following:

1. Which well is located on the growing structure(s),

2. The time(s) of growth,

3. The rate(s) of vertical displacement of the structures assuming uniform compaction, and

4. The growth history of the region.

Growth History Exercise

Prob 08-3 Name: _____________________________
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Chapter 12 
Solid Mechanics and Structural Geology 

Introduction 
Up to this point, we have focused mostly on geometry and kinematics, bor-

rowing a smattering of  concepts from the much broader realm of  solid mechanics.  
The concepts that we have developed so far — vectors, tensors, stress, strain, some 
basic material models, etc. — cover about the first 25-30% of  a standard continu-
um mechanics textbook. This background provides a splendid point of departure 

for beginning to explore the rich world of  solid mechanics. One must become con-
versant with this world if  you want to explore why structures form and behave as 
they do. Solid mechanics is a broad field and there are entire geology-oriented 
books devoted to this subject (Johnson, 1970; Turcotte and Schubert, 1982; Jaeger 
and Cook, 1976; Middleton and Wilcock, 1994; Pollard and Fletcher, 2005). 

The purpose of  this chapter is to give you a glimpse of  the basic approach 
used in a more complete analysis provided by mechanics, as well as review some 
fundamental results that are particularly germane to structural geology. Bear in 
mind that this is only a taste, a teaser for the real thing. Hopefully, this will give you 

σ11

σ22

σ12

σ21

a
r

Pf
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the motivation to dive in deeper, either on your own or in subsequent classes, to ex-
plore this world. 

The Mechanical Approach 
A mechanical approach involves a clear definition of  the components neces-

sary to solve the problem of  interest. The starting point is commonly the simplify-
ing assumption that the distribution of  properties in a material is continuous; i.e., 
that the material is a continuum. This is the origin of  the term, continuum me-
chanics. Because properties vary smoothly in time or space, we describe them in 
terms of  gradients, which mathematically are derivatives. Because the Earth is a 
three dimensional place, the gradients in which we are interested vary in all direc-
tions and are specified along the three axes of  our Cartesian coordinate system, so 
we will define how things vary in terms of  partial differential equations. We 
have already had a taste of  this in Chapters 7 and 8 where the equations governing 
three dimensional strain are expressed as partial derivatives of  displacement (or po-
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Physical Principles!
! Conservation of mass!
! Conservation of linear momentum!
! Conservation of angular momentum!
! ± Strain compatability

Constitutive Equations!
! Elasticity!
! Viscosity!
! Plasticity!
! Combinations of the above

Limiting Conditions!
! Boundary conditions!
! Initial Values

Always hold in classical 
mechanics, regardless of the 
problem, setting, or materials

Depend on the material being 
analyzed and the environmental 
conditions (pressure, 
temperature, time span, etc.)

Depend on the specific problem 
being analyzed and what we 
know, a priori, about it

Figure 12.1 — Hierarchy of  components of  a full mechanical analysis.
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sition) with respect to position. The basic approach relies on three levels of  abstrac-
tion (Fig. 12.1; from most general to most specific): (1) physical principles, (2) 
constitutive equations, and (3) boundary conditions and initial values. 

Physical Principles 

Physical principles are those which apply to any body or substance. Any de-
formation of  a continuous medium that we wish to analyze must conform to these 
principles which form the fundamental basis of  classical mechanics. The first of  
these is conservation of  mass. As we have already seen in the introduction of  
balanced cross-sections and the trishear fault-fold model, the principle of  conserva-
tion of  mass is defined by the continuity equation: 

	 	 (12.1) 

where the first term is the material derivative of  density with respect to time (some-
times written using capital “D”). This equation states that the change in density 
with time plus the flux of  material in or out of  the system must be equal to zero. It 
is from this general equation that we derive the specialized condition of  incom-
pressibility for volume constant deformation: 

	 	 (12.2) 

The cornerstone of  physical principles follows from Newton’s Second Law, 
which deals with the conservation of  momentum. The momentum of  a body 
is equal to its mass, m, times its velocity, v. Newton stated that the rate of  change of  
momentum is proportional to and in the direction of  the “impressed” force, F: 

	 	 (12.3a) 

The term, “impressed force” means the vector sum of  all of  the forces acting on a 
body. If  the mass does not vary with time, then we can write Newton’s second law 
in a more familiar format: 

dρ
dt

+ ρ
∂ (vi)

∂xi
= 0

div v = [ ∂v1

∂x1
+

∂v2

∂x2
+

∂v3

∂x3 ] = 0

F =
d(mv)

dt
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	 	 (12.3b) 

where a is the acceleration. When the force equals zero, momentum must be con-
stant. 

From the condition of  Newton’s second law, one can derive the equations 
of  motion in various formats (see Malvern, 1969 or Pollard and Fletcher, 2005 for 
details of  the derivation). Perhaps the most general and insightful is given by 
Cauchy’s First Law of  Motion: 

	 	 (12.4) 

As with Equation (12.1), d/dt is the material time derivative and gi is acceleration 
due to gravity. The terms in this equation have units of  force per unit volume. This 
equation then says that the total force per unit volume is equal to the gradient of  
stress with distance [with units of  N m–2 m–1 = (kg m s–2) m–2 m–1 = (kg m s–2) m–3] 
or surface forces per volume plus the body forces per volume. 

Torque, or moment, is the force multiplied by the distance from a pivot 
point or fulcrum in a material. In a way exactly analogous to what we have just 
seen, the conservation of  angular momentum says that the sum of  all torques 
is equal to the rate of  change of  total angular momentum. Cauchy’s Second 
Law of  Motion is an expression of  this and its result is a simple and elegant proof  
that the stress tensor must be symmetric. 

	      for     i, j = 1 to 3 

For bodies in equilibrium, the change of  linear and angular momentum with 
respect to time must equal zero. This condition yields two fundamental relation-
ships: the balance of  forces and the balance of  moments (i.e., torques): 

	 	 (12.5) 

	 	 (12.6) 

F = m
dv
dt

= ma

ρ
dvi

dt
=

∂σij

∂xj
+ ρgi

σij = σji

∑ F = ∑ Fsurface + ∑ Fbody = 0

∑ M = 0
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These are the starting conditions for analyses involving mechanics of  static equi-
librium. When you draw a free body diagram, it should depict all of  the forces 
and torques on a body and, if  it is a problem in static equilibrium as many prob-
lems in geology are, those should all sum to zero. 

Finally, for some problems, we wish to ensure that the displacement field as-
sociated with a particular strain field is single valued and continuous. That is, the 
strains imposed produce no gaps or overlaps. This condition of  strain compati-
bility which is specified by St.-Venant’s equations: 

	 	 (12.7) 

where εij is the infinitesimal strain tensor (Chapter 7). Recall that for infinitesimal 
strain the material and spatial coordinates are the same. Equation (12.7) represents 
six equations that must be satisfied if  the displacement field is to be smooth and 
continuous. This equation finds important applications in elasticity theory and is, 
for example, one of  the underlying tenants of  the construction of  the world strain 
map (Holt et al., 2000). Nonetheless, in the pantheon of  physical laws it is a lesser 
god and there are a number of  perfectly physically plausible geological processes 
that do not comply. 

Constitutive Equations 

So far in this chapter, we haven’t said anything about materials, yet, and how 
they respond to applied forces (or body forces). Geological materials are extremely 
complex and different processes may be active at different scales and even in adja-
cent mineral grains. Nonetheless, there are a small number of  models that success-
fully describe the macroscopic behavior of  many natural materials under different 
conditions. We have already reviewed the three basic models in Chapter 9: elastic, 
plastic, and viscous. 

Elasticity 

Because rocks in the upper crust deform by fracturing at even modest strains, 
elasticity theory is intimately related to the concepts of  infinitesimal strain (Chapter 

∂2εij

∂Xk∂Xl
+

∂2εkl

∂Xi∂Xj
−

∂2εik

∂Xj∂Xl
−

∂2εjl

∂Xi∂Xk
= 0
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7). We have already seen some of  the basic equations of  elasticity in Chapter 9. In 
elastic deformation, by Hooke’s Law stress is linearly related to strain by a variety 
of  elastic moduli depending on the type of  deformation: 

  where E = Youngs Modulus (for axial deformations) 

  where G = Shear Modulus (for i ≠ j ; i.e., simple shear deformations) (12.8)

  where B = Bulk Modulus (for volume change deformations 

An important additional parameter, Poisson’s Ratio, ν, defines the relation of  the 
axial to the transverse strain (Fig. 9.1): 

	 	 (12.9) 

For incompressible deformation, ν = 0.5, but rocks have 0.10 ≤ ν ≤ 0.33. Poisson’s 
ratio can be used to relate the elastic moduli of  equation (12.8): 

	 	 (12.10) 

Thus, for a linear isotropic material, only two elastic moduli are necessary to the 
elastic deformation. The constitutive equations for linear elasticity are usually writ-
ten using Lamé’s constants: 

	 	 (12.11a) 

	 	 (12.11b) 

Where Iε is the first invariant of  the infinitesimal strain tensor and  is the Kro-
necker delta. The shear modulus, G, is sometimes written using the Greek letter, μ. 
The Lamé constant, λ, is related to the other elastic moduli by: 

	    and   	 (12.12) 

σ11 = Eε11

σ11 = G (2ε11)
(σ11 + σ22 + σ33)/3 = Bεii

ν = −
et

eℓ
= −

( wf − wi

wi )
( ℓf − ℓi

ℓi )

G =
E

2 (1 + ν)
=

3B (1 − 2ν)
2 (1 + ν)

εij =
(1 + ν)

E
σij −

ν
E

δijσkk

σij = 2Gεij + λδij Iε

δij

λ =
νE

(1 + ν) (1 − 2ν)
λ = K −

2
3

G
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Viscosity 

Over long time spans, even seemingly solid materials creep viscously. In the 
simplest form of  viscosity, a Newtonian fluid, shear stress is linearly related to the 
deformation rate (Fig. 9.3) via the viscosity, η: 

	 	 (12.13) 

In a manner similar to elasticity, the constitutive equation for linear viscosity can be 
written: 

	 	 (12.14) 

Where p is the thermostatic pressure, λ is the second coefficient of  viscosi-
ty and v is the velocity. You may recall that the mean pressure is equal to the first 
invariant of  the stress tensor divided by three (Chapter 5): 

	 	 (12.15) 

The thermostatic pressure can be related to the mean stress by: 

	 	 (12.16) 

Plasticity 

Unlike the simple, linear forms of  elasticity and viscosity theory, plasticity is 
inherently nonlinear and requires the use of  hyperbolic partial differential equa-
tions. So, we will not pursue plasticity any more here except to point you towards 
the classic reference in the field: Hill (1950). 

Boundary Conditions and Initial Values 

The general procedure for carrying out a mechanical analysis is to solve a set 
of  differential equations that result from manipulation of  the physical principles 
and appropriate constitutive equations by integration. This results in constants of  

τ = η ·ε

σij = − pδij + λδij
∂vk

∂xk
+ η ( ∂vi

∂xj
+

∂vj

∂xi )

σmean =
σ11 + σ22 + σ33

3

σmean = − p + (λ +
2η
3 ) ∂vk

∂xk
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integration that must be evaluated. We have seen an example of  this already (al-
though not in the context of  a full mechanical analysis): In Chapter 10, the velocity 
field for the trishear model was derived from the condition of  incompressibility and 
an arbitrary choice for the vx component of  the velocity field. Integrating to solve 
for the vy component resulted in a constant of  integration, which we evaluated 
based on the boundary conditions on the two borders of  the trishear zone (Eqn. 
10.8). 

In general, to solve the integrated differential equations, you must specify ei-

ther the boundary conditions or the initial conditions. Boundary conditions 
are limiting values or conditions on the dependent variables at the edges of  your 
model. If  you are analyzing the flow of  material in a channel, a boundary condi-
tion might be that the velocity of  the flow must go to zero at the edge of  the chan-
nel, or in the case of  the trishear model just discussed, that the velocity in the trian-
gular shear zone must go to zero on the footwall boundary of  the zone. In many 
problems, one might assume that an important boundary condition is that the sur-
face of  the Earth is a traction free surface and thus must be perpendicular to a 
principal stress. Initial conditions are the values of  the time dependent variables at 
time zero of  your analysis. In the case of  the flow in the channel, you might specify 
the velocity of  the fluid entering the channel. 

Commonly, one specifies either the boundary conditions and solves for that 
dependent variable in the interior of  the body or the initial conditions and solves 
for the values of  that dependent variable at some later time. Imagine that you are 
studying the formation of  a laccolith (Johnson, 1970; Pollard and Fletcher, 2005). 
You would specify where vertical displacements go to zero (boundary conditions) 
and, via elasticity theory, solve for the displacement of  the bending layer. A prob-
lem where the boundary conditions are set is known as a boundary value prob-
lem whereas in analyses where the initial conditions are set it is known as an ini-
tial value problem. Needless to say, which type of  analysis you do is dependent 
on what you know already and what your objectives are in the analysis. Take the 
classic physics problem of  a projectile (Middleton and Wilcock, 1994): if  you know 
the mass, angle, and the velocity of  the projectile, you know the initial conditions 
and can calculate how far the projectile should travel and where it will land. From a 
more practical standpoint, however, you know where the target is that you want to 
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hit (a boundary condition) and you want to calculate the initial velocity and angle 
that is necessary to hit the target. 

Some Simple Geological Examples 
There is a rich geological literature of  mechanical analysis of  structures at 

various scales and complexity. In this section, however, we will limit ourselves to 
some simple, yet powerful results, first involving rigid bodies and then from linear 
elastic fracture mechanics. These results are germane to topics that we have already 
discussed: thrust belts, hydraulic fracturing and flexure. 

Mechanics of  Thrust Belts 

Hubbert and Rubey’s (1959) Force Balance for Thrust Plates 

One of  the most famous papers in structural geology was entitled “Role of  
fluid pressure in mechanics of  overthrust faulting” (Hubbert and Rubey, 1959). 
This paper build on earlier work by M. K. Hubbert (1951) and analyzed the case 
of  a block of  geological dimensions that was pushed over a pre-existing surface. 
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Figure 12.2 — Free body diagram for pushing a block across a horizontal surface, 
the basic problem that Hubbert and Rubey (1959) set up to explore the importance 
of  frictional resistance to sliding. The tractions in red are the ones that they explic-
itly analyzed. The black tractions would be necessary for a complete two-dimen-
sional force balance. Fortunately, the lithostatic component of  the normal tractions 
and the shear tractions on the ends of  the block cancel each other out in the full 
analysis.
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Their analysis is a particularly nice example of  static equilibrium balance of  forces. 
In their paper, they only balance forces in the X1 direction although Hubbert was 
clearly aware that this did not constitute a total force balance (Fig. 12.2). Consult 
Pollard and Fletcher (2005, p. 255-260) if  you wish to see the entire three dimen-
sional force balance. The free body diagram (Fig. 12.2) is posed in terms of  trac-
tions (stress vectors); we will have to covert these to forces by integrating the trac-
tion along the area of  interest (i.e., the side or bottom of  the block) in order to do 
the force balance. In the one-dimensional force balance, the normal force on the 
left side of  the block should be equal to the frictional shear force on the base of  the 
block: 

	 	 (12.17) 

Evaluating the right hand side of  the equation, recall that the frictional resistance is 
a function of  the normal stress, , times the coefficient of  static friction 
(from Byerlee’s law): 

	 	 (12.18) 

Evaluating the left side of  Equation (12.17) requires a slight explanation: 
There are two possible outcomes as the value of  σ11 is increased: (a) the push will 
exceed the frictional resistance to sliding that we have just calculated and the entire 
block will slide coherently, or (b) σ11 will exceed the fracture strength of  the material 
and the block will break up rather than slide as a rigid block. The problem we are 
going to solve is actually the latter. To do so, we need an expression for the 
Coulomb Failure criteria in terms of  the principal stresses (Eqn. 6.8, repeated 
here): 

	    where      and   	 (12.19) 

where So is the cohesion and φ is the angle of  internal friction. Under these condi-
tions, σ11 = σ1 and σ33 = σ3. Now, we can expand the left side of  Equation (12.17): 

∫
z

0
σ11d x3 = ∫

x

0
σ31d x1

σ33 = ρgz

∫
x

0
σ31d x1 = ∫

x

0
μsσ33d x1 = ∫

x

0
μsρgzd x1 = μsρgz x

σ1 = Co + Kσ3 K =
1 + sin ϕ
1 − sin ϕ

Co = 2So K
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	 	 (12.20) 

With both sides of  Equation (12.17) evaluated, we have: 

	 	 (12.21) 

Rearranging the result of  Equation (12.21) we get an expression for the length of  
the block, x, in terms of  its thickness, z, the friction along the base, etc.: 

	 	 (12.22) 

For z = 5 km, ρ = 2750 kg m–3, φ = 30°, and μs = 0.85, we calculate the maximum 
length of  the block is 11.8 km, which is much less than the dimension of  large 
thrust sheets, such as the Lewis overthrust in Glacier National Park that can be 
tracked 80 km or more down dip and hundreds of  kilometers along strike.  

The basic problem is that, at these dimensions, rocks are fundamentally weak 
as Hubbert demonstrated in an earlier paper when he posed the thought experi-
ment of  whether a crane large enough could lift the entire state of  Texas! This 
simple analysis captures the so-called paradox of  low-angle thrust faults that struc-
tural geologists have been debating since the early 1900’s. Hubbert and Rubey went 
on to propose that pore fluid pressures, combined with a thrust decollement that 
dipped gently towards the foreland, could explain large thrust plates. Their work on 
pore fluid pressures was pioneering but, alas, they were wrong about the dip of  the 
decollement as well as the shape of  the thrust block. Our modern understanding of  
the mechanics of  thrust belts as critically tapered wedges is summarized by Dahlen 
(1990). 

Critically-Tapered Wedges (Dahlen, 1990) 

In a remarkable series of  papers, beginning in 1983 (Davis et al., 1983) and 
culminating with Dahlen (1990), the Princeton group laid out the modern mechan-
ical basis for understanding thrust belts. Their analysis built on earlier work by El-
liot (1976) and Chapple (1978), both of  whom recognized that thrust belts in cross 

∫
z

0
σ11d x3 = ∫

z

0
(Co + Kσ3) d x3 = ∫

z

0
(Co + Kρgz)d x3 = Coz +

Kρgz2

2

Coz +
Kρgz2

2
= μsρgz x

xmax =
Co

μsρg
+

Kz
2μs
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section had the form of  a finely tapered wedge rather than an rectangular block. In 
this section, we summarize Dahlen's (1990) general two dimensional force balance 
in a non-cohesive wedge. 

The equations of  static equilibrium (force balances) in terms of  partial dif-
ferential equations take into account the z as well as the x direction (Fig. 12.3). 
Summing in the x direction first, we get: 

	 	 (12.23a) 

and in the z direction: 

	
	

(12.23b) 

At the upper surface of  the wedge, the boundary conditions are: z = 0; σxz = 0 (i.e., 
no shear stress on the surface of  the wedge); and σzz = –ρfgD (the weight of  the over-
lying water, or 0 in the case of  subaerial wedges).  The Hubbert and Rubey pore 
fluid pressure ratio in the interior of  the wedge is given by: 

	 	 (12.24a) 

∂σxx

∂x
+

∂σxz

∂z
− ρgz sin α = 0

∂σxz

∂x
+

∂σzz

∂z
+ ρgz cos α = 0

λ =
pf − ρf gD

−σzz − ρf gD
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Figure 12.3 — Diagram showing the coordinate system, key angles, and principal 
stresses for the general critically tapered wedge model, after Dahlen (1990).
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and along the base by 

	 	 (12.24b) 

Assuming constant, λ, ρ, porosity, and coefficient of  internal friction (μ), the 
components of  the stress tensor at any point within the wedge are: 

	 	 (12.25) 

The angles that the principal stresses make with the upper and lower surfaces of  
the wedge are: 

	 	 (12.26a) 

The primed α and φ are the surface slope and the basal friction angle, modified by 
the influence of  pore fluid pressure: 

	 	 (12.26b) 

Out of  all this comes an exact and stunningly simple relationship for the critical ta-
per of  the wedge (Dahlen, 1990): 

(12.27)

λb =
pf basal − ρf gD
−σzz − ρf gD

σxz = (ρ − ρf) gz sin α

σzz = − ρf gD − ρgz cos α

σxx = − ρf gD − ρgz cos α [ csc ϕ sec 2ψo − 2λ + 1
csc ϕ sec 2ψo − 1 ]

ψo = 0.5 [sin−1 ( sin α′ 
sin ϕ ) − α′ ]

ψb = 0.5 [sin−1 ( sin ϕb′ 
sin ϕ ) − ϕb′ ]

α′ = tan−1 (
1 − ρf /ρ

1 − λ ) tan α

ϕ′ b = tan−1 [μb ( 1 − λb

1 − λ )]

α + β = ψb − ψo
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The taper depends on no length parameters and is therefore self-similar. The an-

gles of  the principal stresses, and thus the taper, are dependent only on the material 
properties and the pore fluid pressure and thus do not vary throughout the wedge. 
Another assumption that we have made is that the entire wedge is on the verge of  
failure everywhere. 

By making a number of  small angle assumptions — that  α, β, ψ0, and ψb are 
all assumed to be much less than 1 — we can recover the initial result of  Davis et 
al. (1983). For subaerial wedges, the approximate expression for the critical taper is: 

	 	 (12.28) 

Step-up Angle of  Thrusts 

Now that we know the angles that the principal stresses make with the basal 
decollement, it is a simple matter to calculate the angle that faults within the wedge 
will make with respect to the decollement (Dahlen, 1990). From simple Mohr-
Coulomb theory, the poles to newly formed faults should form at (45 + φ/2)° with 
respect to the σ1 principal stress direction. Given the above calculations, there are 
two possible orientations faults (here given as the angle between the fault plane and 
the basal decollement): 

	    and   	 (12.28) 

This gives rise to lower angle synthetic thrust faults (forward verging thrusts) and 
higher angle antithetic thrust faults, i.e., steep back-thrusts (Fig. 12.4). The failure 
stress on the thrusts within the wedge is: 

	 	 (12.29) 

and on the decollement 

α + β ≈
β + μb (1 − λb)

2 (1 − λ) ( sin ϕ
1 − sin ϕ )

δb = ( 90 − ϕ
2 ) − ψb δ′ b = ( 90 − ϕ

2 ) + ψb

τ = (ρ − ρf) gz sin α ( cos ϕ
sin 2ψo )
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	 	 (12.30) 

The ratio of  these two stresses: 

	 	 (12.31) 

In other words, the decollement must always be weaker than the wedge. This must 
obviously be the case or the thrust belt would not move but would break up inter-
nally. In fact, if  you watch a pile of  snow or sand in front of  a plow blade, you can 
observe an alternation between failure of  the wedge and sliding on the base. 

Holes and Cracks: Some Important Results from Linear Elastic Fracture Mechanics 

Linear elastic fracture mechanics has provided some deep insights into the 
deformation in the upper part of  the Earth’s crust. The derivations of  some of  the 
fundamental equations involve imaginary numbers, complex variable theory, 
and the Cauchy-Riemann equations. These are beyond the scope of  this man-
ual but the interested student may check out the development in Jaeger and Cook 
(1976) or McGinty (2015). As you will see, the results of  this section are especially 
germane to subsurface exploration and drilling for hydrocarbons, geothermal, or 
fluid injection. 

τb = (ρ − ρf) gz sin α ( sin 2ψb

sin 2ψo )

0 ≤
τb

τ
=

sin 2ψb

cos ϕ
≤ 1
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Figure 12.4 — Step up angles of  thrust 
faults within the wedge relative to the 
basal decollement. Faults within the 
wedge are assumed to be Coulomb 
shears.
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Circular Holes 

The problem of  the stresses around a circular hole in a material has been 
called the “most important single problem in rock mechanics” (Jaeger and Cook, 
1976, p. 249). Given that we drill circular holes in rocks for a variety of  reasons, it is 
not hard to see why this is the case! Kirsch (1898) gave the fundamental solution for 
the case of  uniaxial loading but here we will go straight to the general two dimen-
sional loading case. 

We assume a far field coordinate system parallel and perpendicular to the 
axis of  the hole and the far field stresses are defined in that coordinate system (Fig. 
12.5). The stresses around the hole are defined in a polar coordinate system as 
shown in the inset diagram. The hole has a radius, a, and the stresses are calculated 
at a distance, r, from the center of  the hole. The radial and tangential normal and 
shear stresses are: 

	 (12.32a) σrr = (σ11 + σ22)
2 [1 − ( a

r )
2

] + [1 − 4( a
r )

2
+ 3( a

r )
4

] ( (σ22 + σ11)
2

cos 2θ + σ12 sin 2θ)
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Figure 12.5 — General two dimension-
al load on a plate with a circular hole. 
We use a Cartesian coordinate system 
with X3 parallel to the axis of  the hold 
and pointing into the page. Stresses 
around the hole are specified in polar 
coordinate system with the angle θ 
measured up from the horizontal (in-
set view). The hole has a diameter of  a 
and the distance from the center of  the 
hole is specified by r.
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	 	(12.32b) 

	 	 (12.32c) 

For the special case where σ11 = σ1 and σ22 = σ2 and there is fluid pressure, Pf, in the 
hole, the σ12 term goes zero and the pertinent equations become: 

	 (12.33a) 

	 (12.33b) 

σθθ is commonly referred to as a hoop stress. 

Figure 12.6 shows how the stresses vary around the hole for the case of  uni-
axial loading with σ1 = 50 MPa and σ2 = 0 MPa. You can see that the tangential or 
hoop stress at 0° and 180° is three times greater than the far field σ1 value! Fur-
thermore, at 90° and 270° the stress is tensional. This value of  3 (in uniaxial load 
conditions) is known as the stress concentration factor. Interestingly enough, 
this factor is independent of  the size of  the hole: a small hole produces just as much 
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4

] ( (σ22 + σ11)
2
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Figure 12.6 — Left: Variation of  the hoop stresses (σθθ) around the edge of  a borehole for 
the case of  uniaxial loading. Right: radial and tangential stress variation with distance 
from a borehole as a function of  the radius of  the borehole.
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stress concentration as a large hole. You can see that the stress concentration is very 
localized near the hole (Fig. 12.6, right). Within a distance of  five borehole radii, 
the hoop stress has dropped to within 2% of  the regional value. 

Now, let’s say you are an oil company systematically drilling holes in a pro-
ducing area. Every one of  those boreholes will have these very large stress concen-
trations and in some cases the stresses will be high enough to cause the well bore to 
deform by spalling off  of  pieces in the areas of  high stress concentration: these are 
known as borehole breakouts (Fig. 12.7). For traditional vertical boreholes, break-
outs should form by compressive failure in the direction of  the least principal hori-
zontal stress and perpendicular to the maximum horizontal principal stress. This 
turns out to be one of  the best ways to determine the orientations of  the stress field 
in the plane perpendicular to the borehole. Figure 12.8 shows the orientations of  σ1 
in the vicinity of  the San Andreas fault in central California. 

Cracks 

After Kirsch’s circular hole solution, the theory evolved to elliptical holes 
which in the extreme case become cracks. Cracks are important because, not only 
do they determine the ultimate strength of  the material, but they also are the site 
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Figure 12.7 — The location of  break-
outs and potential tension cracks 
around a vertical borehole. The break-
outs should parallel the minimum 
principal horizontal stress direction.
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where subsequent failure via fault tip migration occurs. Some complicated math 
ensued with each succeeding step forward, but the results are surprisingly simple 
and powerful. We skip here this important early development and go straight to Ir-
win’s (1957) approximate solution for stresses near a crack tip, that is r ≤ a/10 (Fig. 
12.9). He calculated that the stresses are: 

	 	 (12.34a) 

	 	 (12.34b) 

	 	 (12.34c)

 

The quantity  is know as the stress intensity factor: 

σ11 ≈
σ∞ πa

2πr
cos ( θ

2 ) (1 − sin ( θ
2 ) sin ( 3θ

2 ))
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σ∞ πa
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Figure 12.8 — The ori-
entation of  σ1 from 
borehole breakouts 
near the San Andreas 
fault (thin black line) in 
central California from 
the World Stress Map 
(Heidbach et al., 2008). 
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	 	 (12.35) 

The above analysis is appropriate for Mode I (opening) cracks (Fig. 6.1). For a 
Mode II (sliding) crack, the equations are (Pollard and Fletcher, 2005): 

	 	 (12.36a) 

	 	 (12.36b) 

	 	 (12.36c) 

And, for a Mode III crack: 

	 	 (12.37a) 
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Figure 12.9 — Stress around a crack tip 
for a crack with a half  length of  a. The 
coordinate system is for Irwin’s (1957) 
approximate solution. σ∞ is the far field 
stress.
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	 	 (12.37b)

 

In all of  these cases, we find the square root of  distance from the crack tip, r, in the 

denominator. Thus, at the crack tip itself, these equations all suggest infinite stress. 
Of  course, there can’t really be infinite stress there, it is just that linear elasticity 
doesn’t apply near r = 0. Figure 12.10 shows plots of  the magnitude of  shear stress 
on planes perpendicular or parallel to the crack. 

Final Thoughts: Simulation vs. Illumination 
There are many types of  models constructed for different purposes. The 

fault-related folding models that we saw in Chapter 10, for example, have the goal 
of  simulating the geometry, and occasionally the sequence, of  deformation. This is 
a perfectly reasonable objective and there are many practical reasons why we want 
to project the geometry to depth using predominantly kinematic rules: to define the 
geometry of  a structural trap in a hydrocarbon reservoir, calculate the amount and 

σ23 =
KIII

2πr [cos ( θ
2 )]
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distribution of  shortening for a palinspastic restoration, evaluate the goodness of  
fit, or define the likely fault geometry to assess seismic hazard. The goal in simula-
tion is to reproduce, as faithfully as possible, those parts of  the structure that we 
cannot see and what they might look like. Some simulations (e.g., the trishear mod-
el) can be carried out extremely rapidly, allowing us to test many possible geome-
tries and find a “best fit” to the data. The problem comes, however, when we as-
sume that the kinematic model “explains” the structure, because we have not, in 
fact, tested whether the model conforms to the well known physical principles de-
scribed in this chapter, nor whether the boundary or initial conditions are reason-
able. 

In this Chapter, we have gotten a glimpse of  the suite of  physical principles, 
constitutive equations, and boundary conditions that can be used to illuminate a 
structural problem of  interest. Full mechanical models commonly do not have, as 
an objective, the simulation of  an overall structural geometry. We are not trying to 
draw a more accurate cross section; instead we are trying to understand why some-
thing formed the way that it did. To answer that question, we don't need to repro-
duce all aspects of  the geometry of  a structure.  What we try to do is distill the 
problem until all that remains are its most fundamental elements. By making a 
model simpler, we are more likely to be able to isolate, and illuminate, the key fea-
tures. When we make models more complex, the number of  free variables increases 
to a point that we can no longer say what is most likely or important. Powerful 
computer packages to carry out large scale numerical models — especially finite 
element and discrete element models — run the risk of  being so complicated that 
one can no longer isolate, and get insight into, the key parameters. 

So, both simulation and illumination have their place in structural geology. 
The student’s goal is to learn the wisdom to decide what type of  model is likely to 
answer the question of  interest. 
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Exercises — Chapter 12 
 

1. A simple, well-known experiment 
in structural geology that relates 
directly to the Hubbert and Rubey 
analysis was proposed by the great 
French fluid mechanics expert, M. 
A. Biot, and was called the “beer 
can” experiment .  5

(a) Experimental procedure 
(i) Take the glass plate provided and place the empty can on one end. Tilt 

the plate by raising the end on which the can rests. Record the angle of  
the plate at which the can begins to slide down the tilted glass. 

(ii) Cover the plate with a film of  water (if  the plate is dirty, you will have to 
clean it with mild detergent first). Repeat step one. Again, record the an-
gle at which the can slides down the plate. 

(iii) Now chill the can by placing it in the cooler with dry ice [Safety note: Do 
not handle the dry ice with your bare hands or you run a serious risk of  
rapid frostbite. Use gloves to place or remove the can from the cooler. 
Dry ice — or frozen carbon dioxide — is much colder than ice made 
from water!]. 

(iv) After two to three minutes, remove the can from the cooler and place the 
can on the wetted glass plate with the open end facing up. Tilt until the 
can slides and record the angle as before. 

(v) Finally, cool the can again, briefly, and place it on the wetted plate, open 
end down. Tilt until the can slides and record the angle 

(b) Draw a two dimensional free body diagram for the beer can experiment. 
(c) Use a force balance to calculate the coefficient of  static friction between the 

can and the glass for steps (i) to (v) in part (a). How do you explain the result 
in step (v)? Derive the appropriate equations that demonstrate what is actu-
ally going on in step (v) relative to the other steps. 

 Editorial note: Biot proposed this experiment back in the 1950's, when beer cans were sturdy affairs. Today's beer 5

cans, while being ecologically much more acceptable (though much less welcome on college campuses), have wimpy 
thin sides that make them unusable for this experiment, so we are reduced to the ignominious fate of  having to use a 
different type of  can!
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2. The following questions relate to Figure 12.6, which shows the orientations of  
σ1 in central California. 
(a) Make a sketch showing the average orientation of  breakouts in the bore-

holes that were used to calculate the map of  stresses. Be sure to include geo-
graphic axes and the orientations of  the principal stresses. 

(b) Hydraulic fracturing experiments at a depth of  1.3 km in the region show 
that σ1 is 49 MPa with an azimuth of  036° and σ3 = 25 MPa on an az-
imuth of  126°. Calculate the hoop and radial stresses around the borehole.  

(c) Assume that the breakouts formed by small Coulomb shear fractures that 
extend 1.2 borehole radii into the rock (measured from the center of  the 
borehole). What are reasonable values of  cohesion and internal friction for 
the rock mass that would explain the formation of  the breakouts? 

(d) The breakouts reported are commonly from depths of  around 3700 m. As-
suming that the principal horizontal stresses remain the same and ρ = 2600 
kg m–3, calculate the values and orientations of  σ1, σ2, and σ3. How would 
these new values change your answer to part (c)? 

3. Figure 12.8 shows the magnitudes of  stresses σ12 (i.e., σxy) with distance from the 
tip of  a Mode I and Mode II crack. What exactly does this stress mean? Ex-
plain how you would go about calculating the maximum shear stress around 
the crack tip for the two cases. 

4. The following questions apply to the critically tapered wedge theory described 
earlier in the Chapter. 
(a) Using Equations 12.26 and 12.27, describe what happens as either the static 

friction on the base of  the wedge, μb → 0 or the pore fluid pressure ratio on 
the base, λb → 1. The former applies where thrust belt decollements are lo-
cated in salt horizons; the latter is commonly observed in submarine accre-
tionary prisms. 

(b) The figure on the following page shows two cross sections and topographic 
profiles across the Subandean fold and thrust belt in Bolivia. The rainfall in 
the region of  the northern profile is 1600 to 2400 mm/yr whereas along the 
southern profile it is 600-800 mm/yr. Discuss the contrasts between these 
two sections/profiles in the context of  the critically tapered wedge theory 
and, where the possible explanations are non-unique, describe what type of  
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data you would like to collect to resolve any ambiguities (assume that money 
is no obstacle!). You may wish to read Dahlen (1990) first. 
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Postface  
What you’ve accomplished and where to go next 

If  you have made it this far, to the end of  this lab manual, congratulations! 
You have tackled material that takes serious work to learn. If  you come from a typ-
ical undergraduate geology major background, this manual has introduced you to 
some tremendously important concepts and methods that are not typically, or ade-
quately, taught to undergraduates in their first structure course. These concepts in-
clude powerful linear algebra methods such as transformations of  coordinates, vec-
tors, and tensors; the concepts of  principal axes and invariants of  tensors; the sig-
nificant differences between stress, infinitesimal strain and finite strain. We have 
learned about material versus spatial coordinates and how important it is in the 
analysis of  strain as well as in mechanics. We have seen that even the most basic 
structural geology calculation has significant uncertainty associated with it and got-
ten a glimpse of  how to determine those uncertainties. Finally, you have seen that 
even the simple spreadsheet program is a powerful computing environment that 
enables you to solve problems that cannot be solved with traditional graphical 
methods. And now, a confession on my part: I hate spreadsheet programs! That is 
because I know how much more powerful, faster, and more capable traditional 
computer programming is. Hopefully this manual has given you the motivation to 
acquire those skills as well. 

If  you come from an engineering or physics background, you are probably 
wondering what all of  the fuss is about! Most of  the topics that we have touched on 
in this manual are treated in the first two years of  a typical undergraduate curricu-
lum in those disciplines. Structural geology is, fundamentally, solid mechanics ap-
plied to earth materials. Though the methods are the same, there are some signifi-
cant differences in approach: an engineer might want to know the maximum load 
that a beam can bear and how much it will flex so that they can design a bridge to 
a particular specification. The structural geologist is more like a forensic scientist: 
they come upon the scene when the bridge has already collapsed and is lying in a 
heap on the valley floor. Our job is to extract from the chaos of  a deformation that 
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has already happened — commonly many millions of  years ago — what the key 
factors were and thereby what the Earth is capable of. 

As forensic scientists, we have to go to the field which is the scene of  the 
crime. There is a misconception that field geologists observe and map whereas 
quantitative or “theoretical” structural geologists stay at home and program their 
computers. The best structural geologists throughout history have done both: they 
go to the field (or lab) and make careful quantitative observations and they know 
how to analyze and probe their data quantitatively to extract meaningful conclu-
sions. This is an iterative process. Initial observations may stimulate deeper me-
chanical analysis which provides a set of  observables for testing with further obser-
vation, resulting in further refinements of  the theory. 

Let’s say you come from that typical undergraduate geology major back-
ground. After reading this lab manual, I flatter myself  to think that a few of  you 
might now be inspired to join the ranks of  the best structural geologists. Where 
should you turn next on this journey? In no particular order, I suggest the following 
studies: 

• Take at least four semesters of  college math, which will take you 
through linear algebra and partial differential equations. The 
earth is a multivariate system with gradients of  properties in all direc-
tions. Inverse methods, a branch of  linear algebra, are extremely pow-
erful. This is not just the minimum level of  math required for structural 
geology but in fact the minimum level for anyone wanting to become a 
physical scientist or engineer in just about any field. 

• Learn a real computing environment, whether it be Matlab, 
Python, Fortran, Basic, C++, etc. If  you cannot program, you have to 
wait until someone else writes the program for you and it is unlikely 
that, by the time that happens, the problem you wanted to solve will still 
be cutting edge. Like the previous bullet, computing is a skill that all sci-
entists and engineers should have. 

• Take geomechanics or engineering mechanics courses. Because 
these courses require dedication and perseverance, they will be more 
approachable once you have some idea what the problems are that a 
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structural geologist wants to solve. This is a necessary step if, as men-
tioned in Chapter 12, you want to illuminate and not just simulate a 
structure of  interest. 

• Most of  the problems that we wish to address in structural geology have 
a high degree of  uncertainty due to incomplete data, subjective hy-
potheses and observation, and lack of  knowledge about appropriate 
boundary conditions, initial values, and constitutive relations. Thus, you 
will need to learn some statistics; fortunately much of  the mathe-
matical background needed for statistics is the same as that needed for 
structural geology itself. Once you have armed yourself  with statistical 
methods, remember that statistics can only help you eliminate models 
or hypotheses; they cannot “prove” a hypothesis. The “best” model is 
simply one that has not yet been eliminated. 

Structural geology provides the basis for a tremendously rewarding career: 
we study deformation features in some of  the most beautiful and remote places on 
Earth. However, we also are expert on problems of  extreme societal relevance and 
interest: earthquakes, induced seismicity, hydraulic fracturing, surface instabilities, 
and so on. The background that I have described above will enable you to pursue 
either or both of  these branches of  our science at the highest level. Good luck! 
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APPENDIX A QUICK REFERENCE

Appendix A: Quick Reference 
This section contains a listing of  formulae that you are likely to use (a lot). They are 
listed in the order that they occur in the text with their original equation numbers. 
Click on the equation number to go to the discussion of  the equation in the main 
text. 

	  

	 ;   ;   ;   	 (1.1) 

Vector magnitude: 

	 	 (2.2) 

Unit vector and direction cosines: 

	 	 (2.3) 

Dot product: 

	 	 (2.6) 

	 	 (2.7) 

Cross product: 

	 	 (2.8) 

Direction cosines of  a line or pole from trend and plunge or strike and dip in a 
NED coordinate system: 

1 radian =
180∘

π
= 57.2958∘

90∘ =
π
2

180∘ = π 270∘ =
3π
2

360∘ = 2π

v = v2
1 + v2

2 + v2
3

v̂ = [cos α cos β cos γ]

u ⋅ v = v ⋅ u = u v cos θ = v1u1 + v2u2 + v3u3

θ = cos−1 (v1u1 + v2u2 + v3u3)

v × u = − u × v = v u sin θ = [(v2u3 − v3u2) (v3u1 − v1u3) (v1u2 − v2u1)]
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Trend and plunge from direction cosines: 

	  

	   if  	 (2.11a) 

	   if 	 (2.11b) 

Special case of  : 

	    if   (  and )	 (2.11c) 

	    if   (  and )	 (2.11c) 

Mean vector standard deviation: 

	 	 (2.12) 

Transformation matrix: 

	 	 (4.2) 

Vector transformation, new coordinates in terms of  old: 

Table 2.1-1
Axis Direction Cosine Lines Poles to Planes 

(strike & dip using RHR)

North cosα cos(trend)cos(plunge) sin(strike)sin(dip)

East cosβ sin(trend)cos(plunge) –cos(strike)sin(dip)

Down cosγ sin(plunge) cos(dip)

plunge = sin−1 (cos γ)

t rend = tan−1 ( cos β
cos α ) cos α > 0

t rend = 180∘ + tan−1 ( cos β
cos α ) cos α < 0

cos α = 0

t rend = 90∘ cos α = 0 cos β ≥ 0

t rend = 270∘ cos α = 0 cos β < 0

cos δαp = 1 − ( N − R
R ) ( 1

1 − p )
1

N − 1
− 1

aij =
a11 a12 a13
a21 a22 a23
a31 a32 a33

=
cos θ11 cos θ12 cos θ13

cos θ21 cos θ22 cos θ23

cos θ31 cos θ32 cos θ33
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	 	 (4.4) 

Vector transformation, old coordinates in terms of  new: 

	 	 (4.5) 

Stratigraphic thickness: 

	 (4.10) 

Down plunge projection transformation matrix (X′2 is the fold axis): 

	 	 (4.12) 

Rotation transformation matrix: 

	 	 (4.14) 

Summation convention (i is the free suffix and j the dummy suffix): 

v′ 1 = a11v1 + a12v2 + a13v3

v′ 2 = a21v1 + a22v2 + a23v3

v′ 3 = a31v1 + a32v2 + a33v3

v1 = a11v′ 1 + a21v′ 2 + a31v′ 3
v2 = a12v′ 1 + a22v′ 2 + a32v′ 3
v3 = a13v′ 1 + a23v′ 2 + a33v′ 3

t′ ′ 3 − b′ ′ 3 = (sin (st r ik e) sin (dip)) (tN − bN) − (cos (st r ik e) sin (dip)) (tE − bE)+

(cos (dip)) (bU − tU)

bij =
−sin (TFA) cos (TFA) 0

cos (TFA) cos (PFA) sin (TFA) cos (PFA) sin (PFA)
cos (TFA) sin (PFA) sin (TFA) sin (PFA) −cos (PFA)

a11 = cos ω + cos2 α (1 − cos ω)
a12 = − cos γ sin ω + cos α cos β (1 − cos ω)
a13 = cos β sin ω + cos α cos γ (1 − cos ω)
a21 = cos γ sin ω + cos β cos α (1 − cos ω)
a22 = cos ω + cos2 β (1 − cos ω)
a23 = − cos α sin ω + cos β cos γ (1 − cos ω)
a31 = − cos β sin ω + cos γ cos α (1 − cos ω)
a32 = cos α sin ω + cos γ cos β (1 − cos ω)
a33 = cos ω + cos2 γ (1 − cos ω)
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	 	 (5.5) 

Tensor (dyad) product: 

	     or        where   	 (5.7) 

Invariants of  a tensor: 

	 	 (5.9) 

	 	 (5.10) 

Tensor transformation, new in terms of  old: 

	 	 (5.11) 

Orientation tensor: 

	 	 (5.22) 

Cauchy’s Law: 

	 	 (5.23a) 

	 	 (5.23b) 

v′ i =
3

∑
j=1

aijvj = ai1v1 + ai2v2 + ai3v3

T = u ⊗ v = uTv Tij = uivj Tij =
u1v1 u1v2 u1v3
u2v1 u2v2 u2v3
u3v1 u3v2 u3v3

λ3 − Iλ2 − IIλ − III = 0

I = T11 + T22 + T33 + = T1 + T2 + T3

II =
(TijTij − I2)

2
= − (T1T2 + T2T3 + T3T3)

III = det T = Tij = T1T2T3

Tij′ = aikajlTkl

T =

∑ cos2 α[i] ∑ (cos α[i] cos β[i]) ∑ (cos α[i] cos γ[i])
∑ (cos β[i] cos α[i]) ∑ cos2 β[i] ∑ (cos β[i] cos γ[i])
∑ (cos γ[i] cos α[i]) ∑ (cos γ[i] cos β[i]) ∑ cos2 γ[i]

pi = σijℓj

p1 = σ11ℓ1 + σ12ℓ2 + σ13ℓ3

p2 = σ21ℓ1 + σ22ℓ2 + σ23ℓ3

p3 = σ31ℓ1 + σ32ℓ2 + σ33ℓ3

MODERN STRUCTURAL PRACTICE 304 R. W. ALLMENDINGER © 2015-20



APPENDIX A QUICK REFERENCE

Mohr’s Circle for stress: 

	 	 (5.25a) 

	 	 (5.25b) 

Mean and deviatoric stress: 

	 	 (5.26)	

	 	 (5.27) 

Slip from piercing points, where p1 is the position of  the line, v is the direction 
cosines of  the line, p2 is a point on the plane, n the direction cosines of  the pole to 
the plane: 

	 	 (6.4) 

	 ;     ;     	 (6.5) 

	 	 (6.6) 

Coulomb failure envelope: 

	 	 (6.7) 

In terms of  principal stresses: 

	      where          and     	 (6.8) 

Failure envelope for frictional slip on pre-existing planes: 

σn = ( σ1 + σ3

2 ) + ( σ1 − σ3

2 ) cos 2θ

τ = σs = ( σ1 − σ3

2 ) sin 2θ

σm =
Iσ

3
=

σ11 + σ22 + σ33

3
=

σ1 + σ2 + σ3

3

σij =
σm 0 0
0 σm 0
0 0 σm

+ [
σ11 − σm σ12 σ13

σ21 σ22 − σm σ23
σ31 σ32 σ33 − σm

]

u =
n̂ ⋅ [p2 − p1]

n̂ ⋅ v̂
=

n1 (p21 − p11) + n2 (p22 − p12) + n3 (p23 − p13)
n1v1 + n2v2 + n3v3

p1 = p11 + uv1 p2 = p12 + uv2 p3 = p13 + uv3

slip = (p (hw)1
− p (f w)1)

2
+ (p (hw)2

− p (f w)2)
2

+ (p (hw)3
− p (f w)3)

2

τ = σs = So + σnμ

σ1 = Co + Kσ3 K =
1 + sin ϕ
1 − sin ϕ

Co = 2So K
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	 	 (6.9) 

Coulomb failure with pore fluid pressure: 

	 	 (6.12) 

Pore fluid pressure ratio: 

	      where     	 (6.13) 

Principal stress ratio: 

	 	 (6.22) 

Stretch, S, and inverse stretch, s: 

	 	 (7.2a) 

	 	 (7.2b) 

Extension, E or e, can be defined as the change in length over the initial length (an 
initial state frame of  reference) or the final length (a final state frame of  reference): 

	 	 (7.5a) 

	 	 (7.5b) 

Shear strain, γ, and the angular shear, ψ, as: 

	      and     	 (7.7) 

τ = μsσn

τ = σs = So + (σn − Pf) μ = So + σ*n μ

λ =
Pf

Plithostatic
Plithostatic = ρ̄rockgz

R =
σ2 − σ1

σ3 − σ1
=

c13c23

c12c22

S =
ℓf

ℓi
=

Δx
ΔX

s =
ℓi

ℓf
=

ΔX
Δx

E =
ℓf − ℓi

ℓi
=

Δℓ
ℓi

=
Δu
ΔX

e =
ℓf − ℓi

ℓf
=

Δℓ
ℓf

=
Δu
Δx

γ =
Δu
ΔY

ψ = tan−1 ( Δu
ΔY )
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Displacement gradient tensor (asymmetric): 

	      or     	 (7.10)	

	      ⇒     	 (7.11) 

Deformation gradient tensor (asymmetric): 

	 	 (7.12) 

	      ⇒     	 (7.13) 

Infinitesimal strain and rotation from the displacement gradient tensor: 

	 	 (7.19) 

	      and         	 (7.20) 

Rotation vector, ri, as follows: 

	 ,   ,   and   	 (7.21) 

Mohr’s Circle for infinitesimal strain: 

	 	 (7.28) 

P- and T-axes for faults and earthquakes, n is the pole, s the slip unit vectors. k = 1 
for normal faults and k = –1 for reverse faults: 

	      and     	 (7.34) 

Δui =
∂ui

∂Xj
ΔXj = EijΔXj dui =

∂ui

∂Xj
d Xj = Eijd Xj

∫ dui = ∫ Eijd Xj ui = ti + Eij Xj

Δxi =
∂xi

∂Xj
ΔXj = DijΔXj

∫ d xi = ∫ Dijd Xj xi = ci + Dij Xj

Eij = εij + ωij

εij =
1
2 (Eij + Eji) ωij =

1
2 (Eij − Eji)

r1 =
−(ω23 − ω32)

2
r2 =

−(−ω13 + ω31)
2

r3 =
−(ω12 − ω21)

2

ε11′ =
(ε1 + ε3)

2
+ (ε1 − ε3)

2
cos 2θ

ε13′ =
γ
2

= (ε1 − ε3)
2

sin 2θ

Pi =
ni + ksi

2
Ti =

ni − ksi

2

MODERN STRUCTURAL PRACTICE 307 R. W. ALLMENDINGER © 2015-20



APPENDIX A QUICK REFERENCE

Seismic moment, Mo, and geometric moment, Mg: 

	      and     	 (7.35) 

“Asymmetric moment tensor” as the dyad product of  the slip and normal vectors: 

	 	 (7.36) 

Kostrov’s symmetric moment tensor, εij: 

	 	 (7.38) 

Lagrangian strain tensor (initial or material state): 

	 	 (8.1) 

Eulerian finite strain tensor, , is the same as the Lagrangian strain tensor but ref-

erenced to the final (spatial) state: 

	 	 (8.5) 

Green deformation tensor (initial or material state): 

	 	 (8.6) 

Cauchy deformation tensor, , is similar to Equation (8.6), but referenced to the 

final or spatial state: 

	 	 (8.8) 

Mohr circle for strain in the deformed (final or spatial) state: 

Mo = As̄μ Mg = As̄

Mij =
n_ faults

∑
k=1

Mguinj

Eij = εij + ωij =
∑ Mg (uinj + ujni)

2V
+

∑ Mg (uinj − ujni)
2V

Lij =
1
2 [ ∂ui

∂Xj
+

∂uj

∂Xi
+

∂uk

∂Xi

∂uk

∂Xj ] =
1
2 [Eij + Eji + EkiEkj]

Lij

Lij =
1
2 [ ∂ui

∂xj
+

∂uj

∂xi
+

∂uk

∂xi

∂uk

∂xj ] =
1
2 [eij + eji + ekiekj]

Cij =
∂xk

∂Xi

∂xk

∂Xj
= DkiDkj

Cij

Cij =
∂Xk

∂xi

∂Xk

∂xj
= dkidkj
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	      and     	 (8.15) 

	      and     	 (8.16) 

Calculating the Cauchy deformation tensor from three deformed lines: 

	 	 (8.22) 

Poisson’s ratio: 

	 	 (9.2) 

Elastic moduli (G = shear modulus, E = Youngs modulus, K = bulk modulus): 

	 	 (9.3) 

Lithostatic load or pressure: 

	 	 (9.4) 

Minimum stress ratio for reactivation: 

	 	 (9.8) 

C11′ =
(C1 + C3)

2
+ (C1 − C3)

2
cos 2θ C13′ =

(C1 − C3)
2

sin 2θ

λ′ = (λ1′ + λ3′ )
2

+ (λ1′ − λ3′ )
2

cos 2θ γ ′ =
γ
λ′ 

= (λ1′ − λ3′ )
2

sin 2θ

aλ′ 
bλ′ 
cλ′ 

=

a ( dx1
ℓf )

2
a (2 dx1dx2

ℓ2
f ) a( dx2

ℓf )
2

b ( dx1
ℓf )

2
b (2 dx1dx2

ℓ2
f ) b ( dx2

ℓf )
2

c ( dx1
ℓf )

2
c (2 dx1dx2

ℓ2
f ) c ( dx2

ℓf )
2

C11

C12

C22

ν = −
et

eℓ
= −

( wf − wi

wi )
( lf − li

li )

G =
E

2 (1 + ν)
=

3K (1 − 2ν)
2 (1 + ν)

Plith = ∫
z

0
ρgdz ≈ ρgz

Γmin = (
σ*1
σ*3 )

min

= (μ + (1 + μ2))
2
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Power law creep: 

	 	 (9.10) 

Shear zone displacement from foliation orientations (γ = shear strain): 

	 	 (9.12) 

	 	 (9.13) 

General 2D shear: 

	 	 (9.16)  

Amount of  angular shear, ψ, parallel to bedding as a function of  the dip, δ, of  bed-
ding (Fig. 10.3):  

Table 9.1:  Frictional Strength of  the Crust-1

Vertical Stress Tectonic Environment Minimum Differential Stress

σ3 thrust faulting

σ1 normal faulting

σ2 strike-slip faulting

σ*1 − σ*3 ≥ (Γmin − 1)
Γmin

ρgz (1 − λ)

     

where     

σ*1 − σ*3 ≥ (Γmin − 1)
Φ (Γmin + 1) + 1

ρgz (1 − λ)

Φ =
σ2 − σ3

σ1 − σ3

σ*1 − σ*3 ≥ (Γmin − 1) ρgz (1 − λ)

·e = Co (σ1 − σ3)n exp( −Q
RT )

tan 2θ′ =
2
γ

d = ∫
y

0
γdy = ∫

y

0

2
tan 2θ ′ 

dy

Dij =
S1

γ(S1 − S3)
ln ( S1

S3 )
0 S3
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	 kink folds:  ;     curved hinges:  	 (10.6) 

Fault-bend fold equations (Suppe, 1983): 

	 	 (10.7a) 

	 	 (10.7b) 

Fault-propagation fold equations: 

	 	 (10.8) 

	 ;   ;   and   . 

Trishear fault-propagation folding (linear velocity field): 

	 	 (10.12) 

Simple shear deformation of  the hanging wall in similar folding: 

	 	 (10.13) 

Incompressibility: 

	 	 (10.17) 

Area of  a polygon with n vertices: 

ψ = tan−1 (2 tan ( δ
2 )) ψ = tan−1 (0.0175δ)

ϕ = tan−1 {
−sin (γ − θ) [sin (2γ − θ) − sin (θ )]

cos (γ − θ) [sin (2γ − θ) − sin (θ )] − sin (γ) }
β = θ − ϕ + (180 − 2γ) = θ − ϕ + δ

sin θ2 =
sin (γ*) sin (γ* − β1)

sin (γ1 − γ*) + [ sin (γ1) sin (γ* − β1)
sin (2γ* − β1) ]

γ = 90∘ + γ* − γ1 β2 = 180∘ − 2γ* + β1 δb = 2 (γ − γ*)

⃗v (x, y) =
v0

2 [( y
m x ) + 1] ̂i +

m
(1 + s)

y

m x

2

− 1 ̂j

sn =
h

cos (δn) (1 + tan (δn) tan (α))

∇v = [ ∂v1

∂x1
+

∂v2

∂x2
+

∂v3

∂x3 ] = 0
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	 	 (10.18) 

P-wave velocity: 

	 	 (11.1) 

Stacking velocity and normal move out time: 

	 	 (11.3b) 

Dix Equation: 

	 	 (11.4) 

The continuity equation: 

	 	 (12.1) 

Law of  conservation of  momentum (mv): 

	 	 (12.3a) 

Cauchy’s First Law of  Motion: 

	 	 (12.4) 

Cauchy’s Second Law of  Motion: 

	      for     i, j = 1 to 3 

Strain compatibility, specified by St.-Venant’s equations: 

A =
1
2

n−1

∑
i=0

(xiyi+1 − xi+1yi)

velocit y = V =
E
ρ

ΔtNMO = tx − to = t2
o +

x2

V 2
stacking

− to

Vi(1,2) =
V 2

st2t2 − V 2
st1t1

t2 − t1

dρ
dt

+ ρ
∂ (vi)

∂xi
= 0

F =
d(mv)

dt

ρ
dvi

dt
=

∂σij

∂xj
+ ρgi

σij = σji
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	 	 (12.7) 

Lamé’s constants: 

	 	 (12.11a) 

	 	 (12.11b) 

Where Iε is the first invariant of  the infinitesimal strain tensor and δij is the Kro-
necker delta. The Lamé constant, λ, is related to the other elastic moduli by: 

	    and   	 (12.12) 

Kirsch’s (1898) solution for stresses around a circular hole: 

	 (12.32a) 

	 	(12.32b) 

	 	 (12.32c) 

For the special case where σ11 = σ1 and σ22 = σ2 and there is fluid pressure, Pf, in the 
hole: 

	 (12.33a) 

	 (12.33b) 

Irwin’s (1959) solutions for stresses near a crack tip: 
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	 (12.34a) 

	 	 (12.34b) 

	 	 (12.34c) 

Stress intensity factor: 

	 	 (12.35) 

For a Mode II (sliding) crack, the equations are (Pollard and Fletcher, 2005): 

	 	 (12.36a) 

	 	 (12.36b) 

	 	 (12.36c) 

And, for a Mode III crack: 

	 	 (12.37a) 

	 	 (12.37b) 
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Appendix B: SmartPhone 
Compass Apps 

Introduction 
We are on the verge of  a new era in structural geology data collection with 

the advent of  smart phone compass apps that enable us to collect much more data 
than is possible with a traditional analog compass. Here, we review the state of  the 
art in smart phone apps, understanding that this section could rapidly become out-
dated with technological advancements, changes in operating systems, and new or 
improved sensors. In particular, we describe how one such app actually does its cal-
culations. 

Smart Phone Apps and Operating Systems 
At the time of  this writing (2017), work by Novakova and Pavlis (2017) sug-

gests that Android devices are extremely variable and thus at least somewhat unre-
liable for structure data collection. In contrast, iPhone compass apps can be used 
with some simple precautions for all but the most demanding tasks (Lee et al., 
2013; Cawood et al., 2017; Allmendinger et al., 2017). Thus, we focus here solely 
on iPhone apps. 

There are a number of  iPhone geological compass apps available, either for 
free or at very moderate cost, written by geologists. These include: 

• GeoID (Lee et al., 2013) 

• Fieldmove Clino (https://www.mve.com/digital-mapping) 

• Lambert (http://www.nileus.de/lambert/) 

• ListerCompass (http://geologycompass.com/listerCompass/) 

• Stereonet Mobile (Allmendinger et al., 2017; http://www.geo.cornel-
l.edu/geology/faculty/RWA/programs/stereonet-mobile.html) 

Although no rigorous comparison of  all the different apps yet exists, they all rely on 
the same sensors and thus are likely to have similar accuracy. This is certainly the 
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case with Fieldmove Clino and Stereonet Mobile, which we have tested against each oth-
er. Thus, choice of  which app to use is one of  personal preference. All of  the apps 
have different interfaces and different degrees of  functionality. Stereonet Mobile, for 
example, is the only one that has an augmented reality sighting mode using the de-
vice camera and has the greatest number of  stereonet analysis functions and calcu-
lations (e.g., rotations, mean vector and cylindrical best fit calculations, etc.). Field-
move Clino offers the greatest flexibility for tagging data with location and rock type 
information. GeoID is particularly well suited for slope stability measurements. Most 
have the ability to show your measurements on a map with differing degrees of  
specificity. 

Stereonet Mobile 
Here we describe in some detail how one such program, Stereonet Mobile (se-

lected because the author of  this manual is also the author of  the app), works. This 
section is taken from Allmendinger et al. (2017) with only minor changes. 

Device Sensors 

Smart phones have a vast array of  sensors to determine device orientation 
including GPS receivers, accelerometers, gyroscopes, magnetometers, and even 
barometers. From these sensors, it is possible to determine device orientation, posi-
tion, velocity, and linear and rotational acceleration (e.g., Allan, 2011). The iOS 
operating system provides the programmer with this derived information through 
its CoreMotion routines which handle the translation of  the raw sensor data into 
the orientations that we as geologists want. Foremost among these is magnetometer 
calibration which attempts to cancel out the effects of  local magnetic fields, espe-
cially from other components within the device such as the power supply, etc., so 
that the orientation with respect to magnetic north can be determined. Dip mea-
surements collected with smart phones are generally much more accurate than 
strikes because the magnetometer is much more sensitive to, and local perturba-
tions more common in, the local magnetic field than in the local gravity field. The 
dip of  the device can be determined from the three components of  the acceleration 
due to gravity alone and does not have to depend on the magnetometer at all. 
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Sensors in the iPhone, sampled by the Sensor Kinetics Pro app at about 30 Hz, 
appear to be very stable (Allmendinger et al., 2017, Fig. 1) especially in comparison 
to the Android devices tested by Novakova and Pavlis (2017, their Figure 2). None-
theless, the iPhone magnetometer is easily perturbed by passing even small metal 
objects within several centimeters of  the device. This has considerable implications 
for best practices in the field when using phones as data collection devices. 

Device Coordinate System and Determining Orientation 

The iOS device coordinate sys-
tem and the rotations about the three 
axes are shown in Figure B1. One 
“reads” the face of  the device like a 
right-handed map coordinate system: 
the first axis, X′1, is parallel to and in 
the short, or side-to-side, direction of  
the face with positive to the right. The 
second axis, X′2, is parallel to the face 
and the long axis of  the device with 
positive toward the top of  the phone, 
and X′3, the third axis, is perpendicular 
to the face and positive towards the 
user. The change in orientations of  the 
device is determined by the rotation of  
this coordinate system with respect to a 
reference coordinate system. The iOS operating system provides the programmer 
with four different potential reference frames. Stereonet Mobile uses the “CMAttitud-
eReferenceFrameXTrueNorthZVertical” reference frame. That is, the rotation ma-
trix is equal to the identity matrix when the phone face is horizontal with the short 
axis (X′1) aligned NS. To determine true north, the operating system must know the 
device position on the globe in order to calculate magnetic declination. Thus, read-
ing an orientation must also turn on the device GPS receiver. 

The change in orientation is supplied to the programmer by iOS in several 
different ways. Perhaps most common is using the Euler angles (Fig. B1), the pitch, 
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Down coordinate system.
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roll, and yaw (sometimes known as the Tait-Bryan angles), which are familiar to 
anyone in aviation or boating. Determining device orientation using these angles, 
though, can be subject to an artifact known as gimbal lock where one degree of  
freedom is lost in certain orientations. Thus, iOS also provides orientation informa-
tion via a rotation matrix or via quaternions. Stereonet Mobile uses the rotation matrix 
to calculate the orientation of  the device relative to the reference frame. The rota-
tion matrix, r, in terms of  the pitch roll and yaw, for iOS is given as: 

	  

The basic form of  these equations will look familiar to anyone who has studied 
how rotations are accomplished in stereonet programs (e.g., Allmendinger et al., 
2012) because they represent a single rotation accomplished by performing, in or-
der, the three rotations about the three axes (i.e., three matrix multiplications).  

The matrix, r, is an orthogonal transformation matrix between the device 
coordinate system and the North-East-Down (NED) coordinate system familiar to 
structural geologists (because dips and plunges are measured with positive down-
wards). To translate device orientation to geological orientation, we simply calcu-
late the orientation of  a unit vector parallel to X′3 (i.e., the pole to the device) for 
planes and another unit vector parallel to X′2, the long axis of  the device, for lines 
(Fig. 2). In terms of  direction cosines in a NED coordinate system, the pole to the 
phone and the geological surface against which it is held is given by: 

r11 = cos (roll) cos (yaw) − sin (roll) sin (pitch) sin (yaw)
r12 = cos (roll) sin (yaw) + sin (roll) sin (pitch) cos (yaw)
r13 = − sin (roll) cos (pitch)
r21 = − sin (yaw) cos (pitch)
r22 = cos (yaw) cos (pitch)
r23 = sin (pitch)
r31 = sin (roll) cos (yaw) + cos (roll) sin (pitch) sin (yaw)
r32 = sin (roll) sin (yaw) − cos (roll) sin (pitch) cos (yaw)
r33 = cos (roll) cos (pitch)
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Likewise, a lineation’s direction cosines are: 

	  

Because Stereonet Mobile uses the pole to the device, the user can place the 
back of  the phone flush on the bedding surface in any orientation to measure the 

pole . nor th = r31

pole . east = −r32

pole . down = −r33

lineat ion . nor th = r21

lineat ion . east = −r22

lineat ion . down = −r23

MODERN STRUCTURAL PRACTICE 319 R. W. ALLMENDINGER © 2015-20

(a) Stereonet view (b) Sighting view

Figure B2. (a) The stereonet view and (b) sighting view of  Stereonet Mobile. In (b), the cir-
cle in the lower right corner is green because the user is holding the phone within 2° of  a 
level sight.
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surface of  interest. We have not noted any significant variation in accuracy when 
the phone is held in different positions, including upside-down. To measure a line, 
the long axis or edge of  the phone must be parallel to the lineation on the rock but 
the back of  the phone need not be flush against the rock. Stereonet Mobile can simul-
taneously measure the orientation of  a plane and a line it contains by placing the 
back of  the phone flush on the rock with the long axis parallel to the lineation in 
the plane (Fig. B2a). 

In cases where one would not want, or cannot, place the phone on the sur-
face to be measured, Stereonet Mobile is also capable of  measuring a plane’s orienta-
tion by sighting through the device camera (Fig. B2b). When making a sighting 
measurement with the plane viewed edge-on (Fig. B3), the pole to the device is as-
sumed to be parallel to the strike direction and the long axis of  the device parallel 
to the true dip direction. For sighting measurements made down-dip, the trend and 
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Figure B3. Three views of  the same plane illustrating the meaning of  “edge-on” view. 
When you are aligned with the edge-on view, and the normal (pole) vector to the phone is 
horizontal (green dot in lower left corner of  the screen), it is parallel to the strike of  the 
plane and the long axis of  the phone is parallel to the dip azimuth/dip vector of  the plane. 
Strike and dip vectors are shown using right-hand rule convention.
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plunge of  the pole to the phone is assumed to be equal to the dip azimuth and dip 
of  the plane. 

Stereonet Mobile offers the user three planes formats to display planes data: 
strike and dip (using right-hand rule), dip azimuth and dip, or as poles. None-
theless, internally it keeps track of  all planes measurements in the first of  the three 
formats. 

Redundant sampling 

Novakova and Pavlis (2017) demonstrated that, for Android devices, tran-
sients in the sensor data — brief  marked excursions from the long term average 
value of  the sensor — are a serious issue. While transients appear to be much less 
of  an issue for iOS devices, Stereonet Mobile nonetheless uses oversampling to avoid 
any such problems. Before starting sampling, however, the device must be stable. 
Stereonet Mobile determines device stability using the acceleration and rotation rate 
data provided by the device. Absolute stability is not necessarily desirable as Stereonet 
Mobile permits the determination of  orientation by sighting and, whenever the 
phone is not held against the rock, small motions are inevitable. Thus, stability in 
Stereonet Mobile is defined as user acceleration rates of  < 0.04 m/s2 and rotation 
rates of  < 0.09 radians/s, values that were picked by trial and error. Stability con-
straints help to avoid inadvertent recording of  data while the device is moving. 

Once the user holds the device stably for 1 s, Stereonet Mobile determines the 
orientation every 100 ms and displays the mean and standard deviation of  all mea-
surements for as long as stability is maintained. For example, if  the user holds the 
phone on a bedding surface for 5 seconds, the orientation and error displayed (Fig. 
3) and recorded will reflect the average of  40 measurements ((5 s - 1 s wait 
time)×10 samples/s). If  the error in strike or dip exceeds 3° or the device is moved 
above the stability threshold, the values are deleted and averaging begins anew. The 
same standards are used for lineation measurements and for measurements of  
planes by sighting with the device camera.  

This sampling procedure is useful for eliminating random errors including 
sensor transients, but it does not eliminate systematic errors such as those that arise 
from the nearby environment. If  the magnetic field is continuously perturbed by 
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the presence of  a nearby metal object, data redundancy will not fix the problem. 
The standard way to attempt to reduce such problems is by magnetometer calibra-
tion. For iOS devices, this is achieved by waving the phone in a figure-8 pattern or 
tilting and rotating the phone. In iOS 10 and with recent Apple® devices, one al-
most never sees the calibration screen, reflecting the increasing sophistication of  the 
CoreMotion routines and services provided to the programmer. Nonetheless, in our 
experience, moving the phone in a figure-8 before starting measurements at a new 
outcrop or after making several measurements still seems to give better results than 
just assuming the operating system is giving the best possible orientations. 

Best practices for smart phone data collection 
1. Consider device purchase carefully — The four different iPhones tested 

by Allmendinger et al. (2017) appear to be demonstrably superior for data col-
lection to the two Android devices tested by Novakova and Pavlis (2017). This 
suggests that anyone contemplating data collection with a smart phone should 
consider their device purchases very carefully, prioritizing quality and reliability 
over economy. However, on both platforms, phone components and operating 
systems change all the time and no one can guarantee absolutely that the most 
reliable phone today will be so two years from now. Unfortunately, most phone 
manufacturers have little incentive to make phones that are ideal for the struc-
tural geologist’s purpose. 

2. Test individual devices for accuracy prior to field use — Regardless of  
the device purchased, one should always do careful tests similar to those de-
scribed here to determine the reliability of  their individual instrument before 
heading out to the field. General reputation of  a manufacturer does not guar-
antee that the individual device will be adequate to the task. If  a particular de-
vice proves faulty, many apps, including those described here, can still be used 
as data recorders, providing the user with automatic time, date, and location 
tagging of  all observations. Test should include: 

2.1. Monitor sensors for stability using an app designed for that purpose. Test 
the sensitivity of  the magnetometer by passing metal objects nearby. 
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2.2. If  using analog compass measurements as a baseline, be sure to compare 
average of  multiple measurements of  the Brunton to the average of  multi-
ple measurements of  the phone app. Do not assume that a single Brunton 
measurement has absolute accuracy. 

2.3. Compare the angular difference of  the average poles to planes determined 
by each instrument. Strike measurement comparisons are only accurate 
when the dip of  the device is 90° (see the supplemental material in All-
mendinger et al., 2017, for an explanation of  why this is true.). 

2.4. If  possible, compare phone measurements to the orientation of  structures 
as viewed on high resolution satellite imagery or topographic data (e.g., 
LiDAR). This test is independent of  devices that depend on measuring 
magnetic field orientation. 

3. Remove metallic and electronic objects from the vicinity when tak-
ing measurements — When using a smart phone in the field, special care 
beyond that normally used with analog compasses should be taken around 
metal objects, magnets, and other electronic devices. There are many phone 
cases available with magnetic clips or closures that can thoroughly spoil your 
phone readings. Additionally, the user should be careful to remove from prox-
imity seemingly innocent things like metal wristwatches, pens, hand lenses, 
pocket knives, tablets and laptops, etc. 

4. Calibrate the magnetometer in the device frequently — Even though 
the magnetometer calibration screen seldom appears anymore in iOS 10, in 
our experience, it is a best practice to perform similar motions (figure-8s, tilting 
the phone in all orientations) before starting on any new outcrop. Additionally, 
similar calibrations should be undertaken periodically on a single outcrop, 
whenever a reading does not appear to make sense, or where digital and analog 
measurements differ significantly. Using a program that can display an orienta-
tion on a high-resolution satellite image so the user can verify that a measure-
ment agrees with local geologic strike of  the feature being measured can pro-
vided added confidence.  Several field-based GIS systems, Fieldmove Clino, and 
the latest version of  Stereonet Mobile can all do this. 
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5. Take a traditional analog compass to the field with you — You will 
want this to check your phone measurements periodically and whenever data 
from the phone doesn’t seem right. 

6. Use a ruggedized water and dust proof  case for the phone — It goes 
without saying that any phone being used for data collection should be protect-
ed from dust, water, and other abuse in a ruggedized, non-magnetic case.  

7. Back up your data whenever you have a cell phone signal by email-
ing the data to yourself  or uploading to the cloud — In some ways, 
data collection with a well-protected phone may actually be more secure than 
in a paper notebook: whenever the user has a cell or wifi signal, s/he can simply 
email the current data file to themselves. This facilitates back up of  critical field 
data at more frequent intervals than one would do if  they had to wait until re-
turning to town to find a photocopy shop to copy one’s field notes!  

8. Take large capacity backup batteries to the field with you — Stan-
dard field gear should include large capacity, rechargeable lithium ion batteries. 
Small, portable batteries with capacities exceeding 20,000 mAh cost less than 
$50 and can recharge a smart phone completely 5-7 times. When we were us-
ing our phones to make 300 or more measurements/day in Chile, the battery 
would become completely depleted at or even before the end of  a ten hour field 
day. With 4 or 5 days between return trips into town, having such batteries 
available in one’s camp and backpack is essential. 
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